
Knowledge Distillation for End-to-End ASR in
Resource-Constrained Environments

Paul Martin
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2023

Abstract
This dissertation explores knowledge distillation techniques for end-to-end Automatic
Speech Recognition (ASR) models in resource-constrained environments. The aim is
to reduce the size and inference time while maintaining a high-quality transcription.
Experiments are conducted on Wav2vec 2.0 to determine a good initialisation strategy
for shallower student models of the same architecture that learn to mimic the larger
teacher model. It is found that copying the teacher’s middle layers to the student yields
the best Word Error Rate (WER) after subsequent distilling. This is validated for
different student sizes.

Further, an effort is made to distil Wav2vec 2.0 to several smaller convolutional ASR
models (CNNs) with faster CPU inference. As two CNNs have a 4× shorter output
length than the teacher, various subsampling methods are proposed and evaluated to
determine a target for each student output frame. An alignment algorithm is determined
that allows for the distillation to shorter-output students with comparable effectiveness
as distilling to a student of the same output length as the teacher.

However, distilling from Wav2vec 2.0 to each CNN-based model does not improve
their WER compared to fine-tuning using Connectionist Temporal Classification (CTC).
Finally, the trade-offs between achieving a low WER and fast inference on CPUs and
GPUs are analysed. The CNN models ContextNet and Citrinet identified as reasonable
candidates for resource-constrained environments where only a CPU is available, as
they achieve the best accuracy and fastest CPU inference. On devices with a GPU,
using a 6-layer Wav2vec 2.0 distilled from a well-copied initialisation is preferable,
which maintains a low WER with fast GPU inference.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Paul Martin)

ii

Acknowledgements
I want to sincerely thank my supervisor Hao Tang for his exceptional guidance and
supervision throughout, for being an oracle to all my questions and for inspiring many
of my approaches and experiments. I am truly grateful for all the assistance he has
given me.

Thank you to my family and friends for their support and encouragement. A special
mention goes to my flatmate’s dog, Wuwu for the occasional playful distraction.

Thank you to Julia for all her love and support.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 1
1.3 Structure . 2

2 Background 3
2.1 Digital representations of speech . 3
2.2 Wav2vec 2.0 . 4
2.3 CNN models . 8
2.4 Training for ASR using Connectionist Temporal Classification 10
2.5 Knowledge Distillation . 11
2.6 Criticism of Related Work . 12

3 Preliminary experiments on student initialisation 14
3.1 Prior work . 14
3.2 Hypotheses on good layer selection 14
3.3 Experiments . 15
3.4 Results and Discussion . 16
3.5 Summary . 19

4 Distilling to shorter-output models 20
4.1 Prior work . 20
4.2 Problem statement . 21
4.3 Trivial solution: Choosing the closest frame 21
4.4 Max pooling: Choosing the best of four frames 22
4.5 Discounted pooling: Choosing a bit of everything 23
4.6 Dynamic: Squeeze to fit . 24
4.7 CNN: Learning to choose . 25
4.8 Aligning: Letting the student choose 25

4.8.1 Alignment algorithm . 25
4.8.2 Making aligning tractable 25
4.8.3 Using the alignment . 26
4.8.4 Ignoring pad-frames (again) 27

4.9 Summary . 27

5 Experiments on distilling to smaller models 28

iv

5.1 Experimental setup . 29
5.1.1 Dataset: WSJ . 29
5.1.2 Implementation . 29
5.1.3 Training parameters . 30

5.2 Baselines . 30
5.3 Distilling to QuartzNet . 31
5.4 Distilling to ContextNet & Citrinet by subsampling 32

5.4.1 Closest frame distillation . 32
5.4.2 Distilling by pooling . 32
5.4.3 Dynamic distillation . 33
5.4.4 Distilling through a CNN head 34
5.4.5 Aligning with and without padding 34
5.4.6 Pooling of aligned groups 35
5.4.7 Aligning to ContextNet . 36
5.4.8 Summary of subsampling mechanisms 36

5.5 Conclusion on distilling Wav2vec 2.0 to CNNs 37
5.6 Application to resource-constrained environments 37

6 Conclusion 39
6.1 Limitations . 40
6.2 Future work . 40

A Learning Rate Grid Searches 46

B Dev-Loss and Dev-WER for student initialisations 48

v

Chapter 1

Introduction

Automatic Speech Recognition (ASR) plays a crucial role in digital speech processing,
facilitating human-computer interaction by converting spoken language into written
text, which is a primary mode of communication among humans. Since the first spoken
digit recognizer was developed by Davis et al. in 1952, speech recognition technology
has come a long way. For many years, Hidden Markov Model (HMM)-based systems
and later hybrid HMM-deep neural network models dominated the field (Wang et al.,
2019). However, recent advancements in hardware and the development of new neural
architectures have led to significant improvements in the capabilities of end-to-end
models. While most speech recognition systems can be labelled as ’end-to-end’ since
they turn speech signals (waveforms) into text, these comparatively newer models
stand out because they use a single deep neural network that handles all parts of the
recognition process, from one ‘end’ to the other.

1.1 Motivation

While servers and cloud platforms with high-end GPUs have the compute to run real-
time inference tasks on large networks with hundreds of millions of parameters, many
consumer-facing speech recognition systems are used on smartphones and desktop
computers for dictation and nowadays also commonly on smart speakers such as
Google Home or Amazon Alexa, which tend to have higher resource constraints. These
could utilise remote servers to offload the recognition and further processing, but that
creates latency, scalability issues, additional operating costs for the company offering
the service and most importantly privacy concerns.

1.2 Contributions

In an effort towards high-quality on-device speech recognition in resource-constrained
environments, this dissertation will focus on compressing existing end-to-end ASR
models with the goal of decreasing model size and inference time on CPUs and GPUs
while maximising accuracy.

1

Chapter 1. Introduction 2

At the time of writing, the dominant architecture in Automatic Speech Recognition is the
self-attention-based Transformer architecture (Roger et al., 2022; Vaswani et al., 2017),
which excels in capturing both short and long-range dependencies in sequential data. I
am therefore using Wav2vec 2.0 (Baevski et al., 2020) as a representative Transformer-
based model. The compression method of choice is Knowledge Distillation (Bucilă
et al., 2006) in which a smaller student network is trained on the output of the larger
teacher network.

Studies of Knowledge Distillation (KD) typically initialise the student either randomly,
by copying the teacher’s first (or last) layers, or by copying alternating layers. However,
to my knowledge, there is no comprehensive study on which initialisation is most
effective. As the layers of a neural network tend to encode different steps of the
prediction pipeline (Pasad et al., 2022), I hypothesise and subsequently show how
carefully choosing which layers to copy from the teacher has a non-negligible impact
on how the student learns.

Another aspect of Knowledge Distillation I investigate is how we can effectively distil
from the dominant Transformer architectures to smaller Convolutional (CNN) archi-
tectures which employ local filters to identify short-range dependencies. While this
may first appear to be a significant constriction from transformers, most attention maps
are nearly diagonal, attending only to local patterns. There have been several recent
successes in small variants of CNN architectures performing comparably to small trans-
former models (e.g. Wav2vec 2.0-BASE with 95M parameters) (Li et al., 2019; Kriman
et al., 2019; Han et al., 2020; Majumdar et al., 2021), but they have yet to achieve the
accuracy of larger models, such as Wav2vec 2.0-LARGE (317M parameters). In this
dissertation, I distil Wav2vec 2.0-BASE (instead of LARGE due to resource constraints)
to various CNN architectures. As some of the students have a shorter output length
than the teacher, I overcome this problem by proposing a novel alignment method for
distilling to shorter-output students, allowing for more flexible cross-architecture
knowledge distillation in ASR and possibly other fields.

Finally, I compare the performance of well-initialised student models derived from the
Wav2vec 2.0 teacher model with the performance of CNN students for low-resource
environments, finding that CNNs are indeed an alternative worth considering.

1.3 Structure

The rest of this dissertation is structured as follows. In Chapter 2 the relevant back-
ground on speech signals, the related model architectures, and knowledge distillation is
introduced. Related work is discussed. Chapter 3 introduces and evaluates initialisation
strategies for Wav2vec 2.0 students as one compression approach. Chapters 4 and 5
propose and evaluate subsampling methods for distilling to the shorter-output CNN
students. The approaches of distilling to the same architecture and distilling to CNNs
are compared using the models’ parameter counts and inference times. Chapter 6
concludes this project by reviewing the main contributions, pointing out the limitations
and suggesting future directions.

Chapter 2

Background

In this chapter, I will introduce the background required for following along with this
dissertation. I will begin with the notion of waveforms and spectrograms as digital
representations of speech, to then explore how different types of neural networks can
perform automatic speech recognition to convert these speech signals to text. I will
further provide a background on how Knowledge Distillation can be used to compress
large models and finally argue why it is of interest to investigate distilling Transformer-
based end-to-end models to Convolutional Neural Networks for Automatic Speech
Recognition.

2.1 Digital representations of speech

As sound and thus speech is fundamentally a series of fluctuations in the air pressure
picked up by a microphone, their digital representation is a plot of the air displacement
(pressure) by time, as seen in Fig. 2.1. However, since we cannot record the change in
air pressure as a continuous function, we instead sample it at discrete time steps. This
is known as the sample rate and is for speech data often set at 16kHz, so 16 thousand
samples per second. Wav2vec 2.0 uses waveforms as its input (Baevski et al., 2020).

Another widely used representation is the log-mel-spectrogram (also found in Fig. 2.1).
As the name suggests it is a modification of the spectrogram. The spectrogram is
a representation of the waveform frequencies as time progresses. It is computed by
applying a Discrete Fourier Transform on a sliding window of length Twindow and stride
Tstride. The amplitudes of the extracted frequencies (oftentimes on a log scale) are
plotted across time. As we humans have a more fine-grained auditory perception of
lower frequencies than higher frequencies, Stevens et al. (1937) proposed the Mel-scale.
Applying this scale to the spectrogram by averaging small overlapping groups in the
low frequencies and larger overlapping groups in the higher frequencies, we get the
Mel-spectrogram. Let the total number of groups be denoted by n f ilters. The log-mel-
spectrogram has the amplitudes (y-axis) scaled logarithmically. The three CNN students
that I am using all take log-mel-spectrograms with Twindow = 25ms, Tstride = 10ms,
and n f ilters = 80 as their input (Kriman et al., 2019; Han et al., 2020; Majumdar et al.,
2021).

3

Chapter 2. Background 4

Figure 2.1: Example of a waveform, its corresponding spectrogram and mel-spectrogram
as digitalisations of sound. The waveform shows the air compression over time, the
spectrogram shows the amplitude of each frequency composing the signal as time
progresses, and the mel-spectrogram averages the spectrogram’s frequencies according
to the mel-scale. The amplitude is shown by the darkness at each frequency-time or
filter-time pixel. The arrows display the order in which each representation is derived.
Diagram adapted from Benito et al. (2019).

2.2 Wav2vec 2.0

Of the models used in this dissertation, I begin by introducing Wav2vec 2.0, as a
representative self-supervised Transformer model. The details of self-supervision and
Transformers are described below.

The Wav2vec 2.0 architecture consists of two main components: the feature extractor
and the Transformer stack. The feature extractor converts waveform batches into latent
speech representation vectors zzz1, ...,zzzN with a total stride of 20ms between each batch
and a window size of 25ms.

The latent speech representations are then fed into a series of Transformer Layers.
Transformers were originally introduced by Vaswani et al. (2017) for machine transla-
tion, but have found their place in many other areas of deep learning, including speech
recognition. While the originally proposed architecture uses a stack of six encoder-type
self-attention layers and a stack of six similar self-attention layers for the decoder,
networks in ASR tend to use a stack of 12 encoder-type Transformer layers and replace
the decoder with an RNN or, in the case of Wav2vec 2.0, a linear layer. Thus, I only
describe the workings of the Transformer encoder layer here and any references to a
Transformer layer henceforth address the encoder.

Chapter 2. Background 5

• • •

Waveform

Frames X

z1 z2 z3

[CNN Feature extractor]

Latent speech representations Z

Transformer Layers

zN• • •

• • •c1 c2 c3 cNContext representations C

y1 y2 y3 yN

Fully Connected Layer

• • •

CTC

Output Y

"Hello World"

• • •
xN

• • •c1
 c2 c3 cM

y1 y2 y3 yM

Fully Connected Layer

• • •

CTC

"Hello World"

CNN Layers

• • •

Log-Mel-Spectrogram

Wav2vec 2.0 Quartznet / ContextNet / Citrinet

z1 z2 z3 zN

x2

x1

x3

xN
x1 x2 x3

Figure 2.2: Diagram showing the abstract architectures of Wav2vec 2.0 on the left and
the CNN-based Quartznet, ContextNet and Citrinet. Wav2vec 2.0 starts by splitting
the waveform into overlapping frames (bottom). These are fed into a CNN feature
extractor that extracts important features from the waveform data, as a replacement for
the traditional Mel-frequency Cepstrum. The resulting latent speech representations
can now be processed by a series of Transformer layers. These have been abstracted
away, but are detailed in Section 2.2. After passing through the main processing step,
Wav2vec 2.0 uses a fully connected layer for post-processing, to reduce the context
representations to values representing the vocabulary. Finally, a linear layer and decoding
algorithm (see Section 2.4) are used to join the outputs together and produce the final
string. The Covolutional networks on the right use a log-mel-spectrogram instead of a
CNN feature extractor for their latent representations zzz1, ...,zzzN . They also use a series
of CNN layers, which are detailed in their respective sections (2.3).

Transformer

The Transformer’s main task is to augment each element in a sequence of input vectors
with its context of one or more other elements from the same sequence. In text process-
ing this can, for example, be a verb’s subject and object, or a pronoun’s antecedent (e.g.
“John ate his sandwich”). In speech recognition, examples of the acoustic context are
the pitch, or the previous and next phones (basic unit of speech). To incorporate these
factors for each element, the transformer learns to select which other input elements to
include (or pay attention to).

The Transformer architecture consists of three fundamental building blocks: a positional

Chapter 2. Background 6

encoding, self-attention unit, and non-linearity in the form of a feed-forward network.

Self-attention We start with the latent speech representations zzz1, ...,zzzN produced by
Wav2vec 2.0’s feature extractor. To determine where to point our attention head (i.e.
which element to use as context) for state zzzi, we perform a search query qqq on a set of
key and value pairs (kkk j,vvv j) derived from the state vectors. The query is formulated as

qqqi = zzziWQ

and the key-value pair for each state hhh j can be generated as

kkk j = zzz jWK, vvv j = zzz jWV

where WQ, WK and WV are learnable weight matrices.

Performing the search is done by first computing the attention weight w j for each key as

w j = qqq⊤i kkk j,

then normalising the weights using a softmax and finally taking the weighted sum over
all values

ccci =
N

∑
j=1

α jvvv j where α j =
exp(w j)

∑
N
l=1 exp(wl)

.

In full,

ccci =

N

∑
j=1

exp(W⊤
Q zzz⊤i zzz jWK)

∑
N
l=1 exp(W⊤

Q zzz⊤i zzzlWK)
hhh jWV (2.1)

Instead of having just a single self-attention selector, Transformer layers tend to combine
multiple such self-attention units into a multi-head attention, taking their weighted
average using learned weights. The advantage of this is that multiple different positions
in the sequence can be attended to with varying importance. A typical number of heads
is 8.

Positional encoding Using only the multi-head self-attention mechanism, we quickly
run into the issue that after augmenting a hidden vector zzzi with its previous and subse-
quent vectors zzzi−1 and zzzi+1, the resulting ccci is indestinguishable from a ccc′i where the
context is flipped such that zzz′i = zzzi+1 and zzz′i+1 = zzzi. Any temporal information in the
context is therefore lost. To solve this, we can add a positional encoding vector to each
input vector zzzi before feeding it into the transformer. Vaswani et al. use the sinusoidal
function

PE(i,2 j) = sin(i/100002 j/dmodel)

PE(i,2 j+1) = cos(i/100002 j/dmodel)

where j specifies the location in the position encoding vector for the ith input vector zzzi
and dmodel is dimension of the layer’s output vector. Other approaches exist.

Chapter 2. Background 7

Non-linearity The final Transformer building block is a non-lineary in the form of
two position-wise feed-forward layers with a ReLU activation in between, operating
independently on each context vector ccci.

Self-supervised learning

With knowledge of how the Wav2vec 2.0 architecture works, we can now look at how it
is trained using self-supervised learning (SSL). Self-supervision is a learning paradigm
in which a model learns patterns in the data without the need for explicitly annotated
data. Instead, the model is taught to solve a pretext task such as reconstructing parts of
the input sequence that have been masked. This avoids the need for large amounts of
task-specific data that is usually prepared in a laborious job usually done by humans,
if it is available at all. Once the model has learnt to solve the pretext task, it can be
fine-tuned on a specific task. Self-supervised models often perform better than models
trained only on the downstream task and require significantly less annotated data.

For instance, the model proposed by Han et al. (2020) is trained on 970 hours of labeled
speech data for ASR using a supervised approach, while the SSL-trained Wav2vec 2.0
is first trained on 53k hours of unlabeled data and subsequently on 100h of labeled data
for ASR and achieves a comparable accuracy.

I will elaborate a little further on how Wav2vec 2.0 works, as it is a key part of this
project. A visualisation of its self-supervision stage can be found in Fig. 2.3. As detailed
in Section 2.2, the model begins by extracting latent speech representations Z using
its feature extractor, where each representation vector encodes a 25ms window with a
20ms stride. These are then passed into a chain of Transformers. The key difference
between supervised training on the downstream task and self-supervised training is that
in the downstream task all vectors from Z get passed into the Transformer block to be
transcribed while in Wav2vec 2.0’s pretext task some latent speech representations get
masked before being fed into the Transformer block. The model should then predict the
quantization of each masked vector.

Once the pre-training step is complete, the quantised representations are removed and
the model is fine-tuned on a labeled speech dataset together with the CTC loss described
in Section 2.4.

Chapter 2. Background 8

Figure 2.3: Visualisation of the SSL pre-training stage of Wav2vec 2.0, taken from the
original publication (Baevski et al., 2020). It shows how the waveform is fed into a CNN
encoder to generate latent speech representations. They are passed into a chain of
Transformers with some latent representations masked. The model’s objective in this
stage is to predict the quantised representations of the masked sections. The function to
compute the quantised representations is trained in parallel to the prediction, as part of
the self-supervision stage.

2.3 CNN models

Besides Wav2vec 2.0, I am also using three different CNN-based models. Namely,
QuartzNet (Kriman et al., 2019), ContextNet (Han et al., 2020), and Citrinet (Majumdar
et al., 2021). I will detail the relevant aspects of their architectures their differences and
why I chose them.

Convolutional Layers First, a primer on Convolutional (or CNN) layers. They work
by convolving a 1D or 2D kernel (also referred to as filter) over their input. Which
neighbouring frames are incorporated to what extent depends on the structure of the
filter, which is learnt during the training phase. The CNN layers used in the following
architectures utilize a larger kernel size and dilation (expands the kernel by skipping
intermittent pixels) to capture long-range dependencies in the input audio data.

General architecture

The three models I am introducing in this section are based on the same convolution-
only Jasper architecture proposed by Li et al. (2019), which itself was inspired by
Wav2Letter (Collobert et al., 2016).

As visualised in Fig. 2.2, the model has no CNN feature extractor and instead relies on a
pre-computed Log-Mel-Spectrogram. Its architecture consists of a stack of B so-called
Jasper blocks, which themselves consists of R sub-blocks. Each sub-block has a 1D
convolutional layer, followed by batch normalisation (Ioffe and Szegedy, 2015), and a
ReLU activation function (Nair and G. E. Hinton, 2010). Each Jasper block is followed
by a residual connection (He et al., 2015).

Chapter 2. Background 9

As in Wav2vec 2.0 the output of the central CNN block gets passed through a fully
connected layer that adapts each context representation ccci to the vocabulary size. Jasper,
as well as the derived QuartzNet and Citrinet are trained using a CTC loss.

QuartzNet

With the largest proposed version of Jasper having 333M parameters (54 convolutional
layers) and the smallest version having 201M parameters (34 convolutional layers), it is
a rather large model compared to the 95M parameters of Wav2vec 2.0-BASE. QuartzNet
has therefore been developed by Kriman et al. (2019) as a light-weight alternative to
Jasper, having only 20M parameters. The authors achieve this significant reduction by
using the deptwise seperable convolutions introduced by Howard et al. (2017) instead
of standard convolutions, though Kriman et al. rename them to time-channel separable
convolutions. The key improvement here is that while standard convolutions perform
the channelwise and spatial computation at the same time, the separable convolution
first applies a convolutional filter to each channel independently to then, in a second step,
apply 1x1 pointwise convolutions to create a linear combination of the channels. This
change reduces the number of parameters and makes the computation faaster without
significantly sacrificing performance.

ContextNet

ContextNet (Han et al., 2020) is remotely based on QuartzNet, but improves upon it
by adding squeeze-and-excite (SE) units from Hu et al. (2020) (see Fig. 2.4). The SE
unit adds a wider context by first average-pooling (Lecun et al., 1998) the incoming
feature map’s channels to pass the resulting vector through a bottleneck formed by two
fully connected layers with ReLU and sigmoid activation functions, where the it is first
squeezed by a factor of 8, to subsequently be expanded (excited) back to its original
length. The resulting vector is treated as a list of scaling factors that is applied to each
channel in the original feature map using pointwise multiplication. This method learns
to add a wider context by emphasising some parts of the (processed) utterance and
suppressing others.

Importantly, ContextNet has a stride of 2 in four of its convolutional layers, resulting
the number of frames yyy1, ...,yyyM output by the CNN encoder to be 4x shorter than the
number of input frames ccc1, ...,cccT . This is in contrast to Wav2vec 2.0 and QuartzNet
keeping the number of frames constant and will become very relevant when distilling
from Wav2vec 2.0 to ContextNet.

The original implementation uses an RNN-T decoder A. Graves, 2012, but for consis-
tency with the other models I am replacing it with a CTC decoder here.

Chapter 2. Background 10

Figure 2.4: Visualisation of the squeeze-and-excite unit (in green) taken from Han et al.
(2020). A set of T context vectors is input from the left. The vectors are averaged to a
single vector, compressed (8×) and subsequently expanded using feed-forward layers.
It is then treated as a mask to be pointwise multiplied with each of the input context
vectors. The result is output.

Citrinet

Citrinet’s architecture (Majumdar et al., 2021) is very similar to that of ContextNet with
small differences in the kernel size and its use of a ReLU activation function instead
of SiLU (Hendrycks and Gimpel, 2016) used by ContextNet. I am including it in this
dissertation to have another comparable squeeze-and-excite-based model with a slightly
different parameter setting, and that was intended to be used with a CTC loss.

2.4 Training for ASR using Connectionist Temporal Clas-
sification

Now that all relevant architectures are introduced, I will elaborate on how they are
trained.

Training and Fine-tuning

Wav2vec 2.0 was proposed has self-supervised learning, as detailed previously, at it’s
core and is subsequently fine-tuned (adapted to a specific task, typically using a smaller
dataset) for ASR using a supervised training schedule with a CTC loss, as explained
below.

QuartzNet, ContextNet and Citrinet do not use a self-supervision stage and are directly
trained on supervised ASR. QuartzNet and Citrinet are trained on a CTC loss, but
ContextNet is trained using an RNN-T decoder A. Graves, 2012, which I change for
a CTC decoder for consistency in distilling. This training process, however, requires
significant computing power (e.g. QuartzNet training took 5 days on eight NVIDIA
Tesla V100 GPUs), and is not something I can easily replicate with the available
hardware. Therefore I am using the pre-trained QuartzNet 15x5, ContextNet 256 and
Citrinet 256 models published by NVIDIA (2022; 2021a; 2021b) and fine-tuning them
on my own dataset . For more details, refer to Section 5.1.1.

Chapter 2. Background 11

Connnectionist Temporal Classification

Connnectionist Temporal Classification (CTC) loss (Alex Graves et al., 2006) is the
training objective used in Wav2vec 2.0, QuartzNet, Citrinet and my adaptation of
ContextNet. Its advantage over, for example, cross-entropy for speech is that while in
cross-entropy loss each of the network’s output frames is compared (aligned) to a single
target frame, CTC computes a likelihood for the output by summing up the probabilities
of all possible alignments. For instance, of the three outputs

EXAMPLE*******, ***EXAMPLE****, **EXAAAMM**PLE

where * represents a <PAD> token, only the first (and possibly the second) might align
well in a default cross-entropy setting. A modified alignment of frames to a so-called
forced alignment by pre-segmenting the training speech data can get around this. In
contrast, the CTC approach of considering all possible alignments is much more flexible
and has a smaller impact on the structure of the network, as force-aligned models tend
to have an HMM component to model the long-range sequential structure Alex Graves
et al., 2006.

As seen in the rightmost example above, subsequent occurrences of the same character
are reduced to a single character (e.g. AAAMM becomes AM). Therefore, to allow repeating
characters, such as in HELLO, a ‘blank’ token must be output between each repeating
character. While the blank token may be distinct from the pad token, the implemen-
tations of Wav2vec 2.0 (Facebook-Research, 2022), QuartzNet (NVIDIA, 2022) and
Citrinet (NVIDIA, 2021a) use the same token as padding and blank.

It is also important to note that CTC makes an independence assumption, which
assumes that each output label in the output sequence is conditionally independent
of the others given the input sequence (waveform or Log-Mel-Spectrogram). While
this assumption makes the loss computation more tractable, it may limit its language
modelling capabilities. For instance, a model with a CTC decoder may confuse the
spellings of “to”, “too” and “two” in the spoken utterance “There are two things to do”.
This can be improved by introducing an additional language model, though I am not
using any for my experiments, as they are unimportant for my proposed methods and
add unneccesary complexity.

2.5 Knowledge Distillation

As touched upon in the introduction, the problem with current state-of-the-art models
(Roger et al., 2022), such as Wav2vec 2.0 is their size. With multiple million or billion
of parameters they not only consume vast amounts of memory but also have a rather
slow inference. Originally introduced by Bucilă et al. (2006) and advanced by G. Hinton
et al. (2015), Knowledge Distillation (KD) aims to solve this issue by compressing
a large model (the teacher) to a smaller one (the student), retaining as much of the
teacher’s accuracy as possible. In contrast to training the smaller model from scratch,
in Knowledge Distillation we teach the student to copy the teacher’s distribution over
all possible outputs, instead of attempting to attain a ‘perfect’ distribution of 1 for the
ground truth and 0 for all other options.

Chapter 2. Background 12

To perform the distillation, we feed the original dataset that was used to train the large
model (or a similar one) into the teacher. In parallel, we feed the same data into the
student network. The student’s loss is calculated by summing the Kullback-Leiber
divergences (eq. 2.2) between each student output frame yyyS

1, ...,yyy
S
N and its corresponding

teacher frame from yyyT
1 , ...,yyy

T
N , as shown in equation 2.4.

The Kullback-Leiber (KL) divergence between the prediction and target output vectors
yyy and yyy∗ is given by

DKL(yyy∗∥yyy) =
dim(yyy)

∑
j=1

y∗j log
(y∗j

y j

)
(2.2)

= H(yyy∗,yyy)−H(yyy∗) (2.3)

where the subscripts y j and y∗j are the jth element of the respective vectors.

Summing the KL-divergences of all student-teacher frame pairs gives the loss for a
single datapoint.

LKD =
N

∑
i=1

DKL(yyyT
i ∥yyyS

i) (2.4)

We can also write the KL-divergence as shown in eq. 2.3, where H(yyy,yyy∗) is the cross-
entropy between the prediction frame yyy and the target yyy∗, and H(yyy∗) is the target frame’s
entropy. Since the teacher is frozen (not being trained), it will always output the same
frames for a given input. Hence, H(yyy∗) is a constant and will be nullified when taking
the derivative of LKD during backpropagation. I am mentioning this for the reader’s
reference, as some papers write Knowledge Distillation in terms of cross-entropy instead
of KL-divergence, as the training outcome is the same.

As an extension to computing the LKD of the output frames, some newer publications
(Chang et al., 2022; Lee et al., 2022) go a step further and also match select hidden
states produced by the layers.

2.6 Criticism of Related Work

This section introduces and discusses the prior work related to the focus of my disserta-
tion, thereby motivating the relevance of my project in the field.

Initialising students Despite various publications having studied the distillation of
ASR models, and specifically Wav2vec 2.0, only Peng et al. (2021) appear to remotely
explore the impact that the student’s initialisation has on the accuracy after distillation.
Other works may use the initialisations of previous papers, despite their selection being
unjustified (Yang et al., 2023; Fu et al., 2023). Even the exploration done by Peng et al.
is limited to comparing two initialisations of which one is unjustified. However, they
nonetheless show that the choice of initialisation matters significantly. To improve on
their work, I investigate the initialisation problem further.

Chapter 2. Background 13

Transformer to CNN distillation While Knowledge Distillation has been shown to
work effectively in compressing large models to smaller ones of the same architecture,
there is very little work done on cross-architecture KD. This area and especially the
distillation of Transformer-based models to CNNs is of particular interest, as both have
shown very promising results in ASR (Baevski et al., 2020; Hsu et al., 2021; Gulati
et al., 2020; Li et al., 2019; Kriman et al., 2019; Han et al., 2020; Majumdar et al., 2021).
While Transformers can still boast with marginally better Word Error Rates (WER)
(See LibriSpeech ranking on Papers with Code, 2022), CNNs are slowly catching up.
The advantage of CNNs is their significantly faster inference time and lower parameter
count (See Table 1 in Chia et al., 2019).

While individual publications on distilling Transformers to CNNs for image classifica-
tion (Liu et al., 2022) and text classification (Chia et al., 2019) exist, showing it can be
done, there has so far been no work on this in speech processing. This is a shame, as
distilling to CNNs appears to be a good way to further compress the large Transformer
models besides reducing their width or depth.

Thus, I investigate the effectiveness of distilling a Transformer-based SSL model to a
CNN in order to reduce both size and inference time significantly while retaining a low
WER. To this end I investigate the impact of different student architectures and compare
the results to training a CNN from scratch to form a conclusion about the relevance of
the Transformer-to-CNN framework in ASR. Importantly, I propose a new method of
alignment for distilling a CTC-based model to students with fewer output frames than
the teacher.

Chapter 3

Preliminary experiments on student
initialisation

In this chapter, I explore whether a Wav2vec 2.0 student with 2, 6 and 10 transformer
layers can learn better when initialised with a selection of parameters from its larger 12-
layer Wav2vec 2.0 teacher. I start by motivating the investigation, stating the hypotheses
and providing a brief overview of the experimental setup and finally discuss the results.

3.1 Prior work

While other publications (Yang et al., 2023; Fu et al., 2023) have worked on distilling
Wav2vec 2.0 for ASR, Peng et al. (2021) are the only ones, to the best of my knowledge,
that compare how a student’s initialisation impacts its achieved performance. Specif-
ically, they compare initialising by copying alternating layers with copying the last
layers. The alternating strategy is adopted from DistilBERT (Sanh et al., 2020), but no
justification for using the last layers is given. Chang et al. (2022) and Fu et al. (2023)
propose to distil ASR models not only based on the student’s and teacher’s outputs
but also by comparing their hidden representations after specific layers. In particular,
Chang et al. (2022) distil a similar network to Wav2vec 2.0 to a 2-layer network of
the same architecture. They first initialise with the teacher’s first two layers and then
finetune the student to predict the teacher’s hidden representations after the latter’s 4th
and 8th transformer layer as well as the final output. The authors reason that each of
these layers encodes important information about specific tasks that they were interested
in (4th layer for speaker identification, 8th layer for ASR and 12th layer for keyword
spotting and intent classification).

3.2 Hypotheses on good layer selection

Thus, I make the following hypotheses about which teacher layers may be favourable
for initialising the student:

Hypothesis 1. A fine-tuned layer knows how to process its previous layer’s outputs, so

14

Chapter 3. Preliminary experiments on student initialisation 15

copying subsequent layers may avoid re-learning how to process each other’s inputs.
This may be extended to favour any pair of layers that are close.

Hypothesis 2. Far-apart layers tend to encode different information, so copying distant
layers would transfer more information.

Hypothesis 3. Middle layers will be more important to copy, as Pasad et al. (2022)
find that ‘the central layers encode the most contextual information’ in Wav2vec 2.0.

Hypothesis 4. Sequential layers encode sequential processing steps. Thus, the order
of layers in the teacher should remain the same when copied to the student. If teacher
layer Li comes before layer L j, their order shall not be reversed to L j,Li in the student.

Hypothesis 5. Larger students depend less on the layer choice, as a wider range of
layers is copied from the teacher, conveying most information.

While hypotheses 1 and 2 appear contradictory, it may be important to strike a balance
between them. The layers should be close enough to easily adapt to their previous
layer’s output, but far enough to still encode sufficiently different processing steps.

3.3 Experiments

To test hypotheses 1–4 I conceive a set of experiments, where a 12-layer Wav2vec
2.0-BASE is first fine-tuned on an ASR task from the English Wall Street Journal (WSJ)
dataset (Paul and Baker, 1992). A 2-layer Wav2vec 2.0 student is initialised by copying
a specific combination of layers from the teacher (the feature extractor is also copied)
and subsequently fine-tuned by distilling the teacher’s output frames yyyT

1 , ...,yyy
T
N (see Fig.

2.2) to the student’s output frames yyyS
1, ...,yyy

S
N using the KD-loss from equation 2.4. The

loss is averaged for each batch. The performance is measured using the Word Error
Rate (WER) metric, which ranges from 0 to 100%, with lower values being preferable.

The initialisation combinations used are, as pairs of teacher layers: (1,2), (6,7), (11,12),
(4,9), (1,12), and (8,5). A random student initialisation is also trained as a baseline.
These are chosen to test the hypotheses through the following comparisons:

I) Comparing the students with initialisations (6,7), (4,9), and (1,12) will indicate
whether it is better to use consecutive teacher layers (hyp. 1) or distant layers
(hyp. 2), and whether close but non-adjacent layers are acceptable, or may even
be favourable. If hypothesis 1 holds, the (6,7) student should attain a low WER
while both other students attain a high WER. If hypothesis 2 holds, student (1,12)
should be better.

II) Comparing the students with initialisations (1,2), (6,7) and (11,12) will test
hypothesis 3. If it holds, the student with (6,7) should attain a lower WER than
the other two. All pairs consist of consecutive layers to not interfere with testing
hypotheses 1&2

III) Comparing students (6,7) and (5,8) to their respective inverses (7,6) and (8,5), the
students with inverted initialisations should do significantly worse if hypothesis 4

Chapter 3. Preliminary experiments on student initialisation 16

holds.

These comparisons each form a small sample set, so more experiments are run as shown
in Figure 3.1.

In addition to these experiments, I also test whether the effect of changing the initialisa-
tion configuration has a lower impact on larger students (hyp. 5) by distilling the above
teacher to 6-layer and 10-layer Wav2vec 2.0 students in the configurations from Table
3.1.

Experimental Setup The self-supervised teacher Wav2vec 2.0-BASE model pub-
lished on Hugging Face (Facebook, 2021) is fine-tuned for ASR on the WSJ dataset
using a Sentencepiece tokeniser (Kudo and Richardson, 2018). I have split the official
training data into custom train and dev sets with a 98.64/1.36 split at the speaker bound-
ary, such that no individual is in both sets. The model was fine-tuned over 50 epochs
with a batch size of 4, an Adam optimiser (Kingma and Ba, 2017) and an exponentially
decaying learning rate schedule, starting at 2.6× 10−5 and decaying by 10% every
epoch. A grid search for the learning rate is in Appendix A. The fine-tuned Wav2vec
2.0-BASE achieves a WER of 2.1% on the dev-set.

The 2-layer Wav2vec 2.0 students were distilled with the same settings as the teacher
and used the same WSJ train set.

In adaptation to the memory limitations of my GPU (NVIDIA GeForce RTX 2080 Ti),
the 6-layer and 10-layer students are trained using a batch size of 2. As these are larger
models and take longer to train, I have kept the number of epochs at 20 to allow the loss
to plateau.

For further details on the experimental setup, refer to chapter 5.

3.4 Results and Discussion

The Word Error Rates attained by each 2-layer student after the distillation are shown
in Fig. 3.1. Each cell is a student that was initialised by copying two layers from
the teacher, where the x and y-axes specify the teacher’s layer that was copied to the
student’s first and second layers respectively. The cell’s colour represents the WER at
which the student converged. For instance, the bottom right cell shows that the student
initialised with teacher layers (11,12) converges to a dev-WER of 39.6%.

Referring to the comparisons outlined in the previous section (3.3), the following
conclusions can be drawn

I) For the hypothesis that consecutive layers are favourable over distant layers (hyp.
1) to hold, we would expect student (6,7) to achieve a significantly lower WER
than any students initialised with non-consecutive layers. This is not the case.
While the far-apart initialisation (1,12) with a WER of 39.6% is comparable to
the random initialisation (WER of 39.8%) and indeed much worse than the 29.3%
achieved by the consecutive initialisation. However, student (4,9) also attains a
better-than-random WER of 32.5% and student (5,8) even performs slightly better

Chapter 3. Preliminary experiments on student initialisation 17

Figure 3.1: Heatmap comparing initialisation strategies for a 2-layer Wav2vec 2.0. Each
cell is a student that is initialised by copying the layers on the x and y-axis from the
teacher to the student’s first and second layers. In the left triangle, the order of layers is
preserved from the teacher. In the right triangle, the order is flipped. The colour shows
the WER after knowledge distillation. Lighter is better. The student with initialisation (5,8)
does best while the students in the corners do worst. Training parameters are described
in Section 3.3.

(28.1%) than the student with adjacent layers, despite them having copied layers
that have 1 and 2 layers between them in the teacher network. This indicates that
factors other than proximity may be more important when choosing which layers
to copy.

II) To check whether middle layers are favourable to copy (hyp. 3), we can see from
Fig. 3.1 that the students in the grid’s centre attain a WER that is approximately
10%-points less than the WER of students near the corners. In particular, the
student initialised with central layers (6,7) performs significantly better than the
students initialised with the first two layers (1,2) and the last layers (11,12). Both
non-central students are comparable to the randomly initialised student. Thus, the
evidence supports hypothesis 3.

III) In Fig. 3.1 we can see that students (6,3), (8,5), and (10,7), which were initialised
by reversing the order of layers from the teacher, attain WERs of 36.0–39.7%.
These are significantly worse than the WERs of students (3,6), (5,8), and (7,10)
that copied the same layers in their original order. Interestingly, some of the
reversed students are marginally better than the randomly initialised student. This
may be worth investigating further.

Thus, I have gathered evidence to support my hypotheses that it is the most effective to
copy the central layers (hyp. 3) and that the order in which the layers are copied should
not be reversed (hyp. 4). The tests for hypotheses 1 and 2 are inconclusive, as the layers
copied to student (4,9) were originally three layers apart, but the student still does much
better than a randomly initialised student.

To test these hypotheses on students with more than two layers and test whether the
importance of layer selection declines for larger models (hyp. 5), I distil the teacher to
6-layer and 10-layer models, as shown in Table 3.1. For both model sizes, the random

Chapter 3. Preliminary experiments on student initialisation 18

initialisation does much worse than the students initialised from the teacher. This is to
be expected, as the randomly initialised models cannot benefit from the initialisation
found by the self-supervised pre-training of Wav2vec 2.0.

Considering only the initialisations by copying, the 6-layer student sees its WER reduced
by approximately 40% and 60% when using the middle layers instead of the last or first
layers respectively. For completeness, I also include the results from initialising using
every second layer (even or odd layers), as proposed by Sanh et al. (2020) and used for
Wav2vec 2.0 by Peng et al. (2021). Using alternating layers is better than initialising
using the first or last layers, but not as good as using the middle layers.

When distilling to the 10-layer student, the importance of selecting good teacher layers
diminishes almost entirely. Surprisingly, copying the middle layers does worse than
using the first or last. However, I suppose this may be because choosing layers is now
more about which layers to remove than which to keep, as 10/12 layers are copied.
The difference between the distilled models is negligible, though, with only a 7%
improvement from using the middle layers to the last layers.

Summarising the differences in initialisations between model sizes, the patterns found
in the investigation of the 2-layer student appear to also hold for the 6-layer student.
However, they appear not to hold for the 10-layer student, though the small differences
in WERs among the 10-layer students may be due to randomness in the distillation
pipeline. Appendix Fig. B.1c shows this similarity between the students across epochs.
Overall, the impact of choosing which layers to copy from the teacher on the WER of
the distilled student appears to decrease as the model size increases (hyp. 5). In contrast,
copying any selection of layers from the teacher instead of using a random initialisation
becomes more important.

Table 3.1: Comparison of initialisation policies for a 6-layer and 10-layer Wav2vec 2.0
student. The policy column describes which layers are copied from the teacher to
initialise each student. ‘Even’ means layers 2,4,...,12 are chosen. ‘Odd’ are layers
1,3,...,11. Since there are only six even or odd layers, this policy is only available for the
6-layer student. The quoted WER is measured on the development set after knowledge
distillation.

Initialisation policy
Student WER (%)

6-layer 10-layer

First 13.0 2.8
Middle 4.7 2.9
Last 8.1 2.7
Even 6.5 -
Odd 6.7 -
Random 23.9 19.7

Chapter 3. Preliminary experiments on student initialisation 19

3.5 Summary

In this chapter, I investigated the impact of initialising a Wav2vec 2.0 student model
by copying different combinations of teacher layers with the aim of identifying and
understanding the properties of a good layer selection. Five hypotheses on the relative
importance of different layers were outlined and tested on 2-layer, 6-layer and 10-layer
students.

The results show that copying central layers from the teacher improves the student’s per-
formance after distillation, supporting hypothesis 3. Evidence supports the hypothesis
that maintaining the original order of layers when copying leads to better accuracy (hyp.
4). However, the results for hypotheses 1 and 2 were inconclusive, as other factors may
play a more significant role in determining the effectiveness of an initialisation strategy.

Extending these hypotheses from the 2-layer students to larger models, I found that
the importance of layer selection decreases. This especially holds when distilling
to a 10-layer student, which showed no diminishing performance differences across
initialisations. This supports hypothesis 5 and suggests that larger models may be more
robust to variations in initialisation strategies.

The best initialisations found for each layer size are (5,8), middle layers and last layers,
achieving WERs of 21.1%, 4.7% and 2.7% on the development set.

In summary, this chapter provided valuable insights into the impact that initialisation
strategies have on the distillation of Wav2vec 2.0 models. These results are used in
Section 5.6 where they are evaluated against the efforts of distilling to CNNs in the
context of resource-constrained environments.

Finally, I hope that these findings can contribute to future research on knowledge
distillation towards more efficient and accurate ASR systems.

Chapter 4

Distilling to shorter-output models

In this chapter, I propose a novel method for distilling CTC-based ASR models to
students with a shorter output length. Specifically, this approach is designed to distil
Wav2Vec 2.0 into ContextNet and Citrinet, as these models each employ four subsam-
pling layers in their encoders, resulting in a 4× shorter output sequence than Wav2Vec
2.0. The method aims to enable efficient knowledge transfer from the teacher model
(Wav2Vec 2.0) to the student models (ContextNet and Citrinet) while maintaining a low
WER, despite the difference in output lengths.

I begin by discussing prior work on knowledge distillation of CTC-based ASR models
to shorter-output students, providing a motivation for why this problem should be
addressed, followed by a more formal problem statement. Next, I will present a trivial
solution before delving into more sophisticated approaches, including token pooling,
discounted pooling, and CNNs for learnable down-sampling. Finally, a Viterbi-based
alignment algorithm and its variations are introduced, for which a detailed evaluation
is available in the experiments chapter (ch. 5). This structure aims to guide the reader
through the variety of down-sampling approaches for CTC-based models, offering a
comprehensive understanding of the proposed algorithm for distilling to models with
shorter output lengths.

4.1 Prior work

This section on prior work is brief, as, to the best of my knowledge, thus far only one
publication has distilled CTC-based neural speech recognition systems to shorter-output
students. Lee et al. (2022) have compressed Wav2vec 2.0 by downsampling the feature
extractor’s output (which serves as the transformer encoder’s input) using a CNN layer.
This allowed the transformer layers to be reduced to a shorter sequence length, thereby
removing parameters. Since this thinner model has a shorter output length, Lee et al.
use a deconvolutional layer (Zeiler et al., 2010) to extend the output sequence to the
original Wav2vec 2.0 length. While they show that a deconvolutional layer indeed
works acceptably well for distilling to shorter-output models, their method requires the
head to stay attached, thereby modifying the student. A general solution to the problem,
however, should be possible without extending the student and increasing its size and

20

Chapter 4. Distilling to shorter-output models 21

worsening its inference time.

Sharing a similar objective to mine, Yoon et al. (2021) work towards enabling cross-
architecture knowledge distillation for a more flexible compression to more efficient
architectures. They do this for the distillation between CTC-based convolutional and
recurrent neural networks . Although their approach appears to be effective, it has a
notable drawback: the output sequences of the teacher and student must be of equal
length.

4.2 Problem statement

Thus far, I have only briefly mentioned the challenge of knowledge distillation from a
CTC-based teacher to a student model that outputs fewer tokens without elaborating on
the reason. The issue arises specifically because the KD-Loss (see eq. 2.4) individually
compares each student frame to a corresponding teacher frame, aiming to make the
former as similar as possible to the latter. The loss is computed by summing over the
KL-divergence between each frame pair.

When the teacher and the student have an equal number of frames, it is straightforward
to align the frames: the first student frame matches the first teacher frame, the second
matches the second, etc. However, when the teacher outputs N frames and the student
outputs M < N frames, we have to explicitly decide which frames to pair. Concretely,
for each student output frame yyyS

i with i = 1, ...,M, how do we determine the target yyy∗i
from the teacher, in such a way that the student model learns the most optimal output
and achieves the lowest possible Word Error Rate?

In this dissertation, I focus on the case where M ≈ N/4 (the ratio between Wav2vec 2.0
and ContextNet / Citrinet). Nevertheless, the proposed approaches should be applicable
to other teacher-student output ratios as well, including situations where the ratio
between the output lengths is not fixed.

4.3 Trivial solution: Choosing the closest frame

If we assume that the output frames linearly map onto the input frames, then we can
determine the input timeframe associated with each output frame. Following this notion,
an output frame should produce the label that approximately represents the phone from
its corresponding input frame. As a result, the output frames corresponding to identical
input frames in various models should be similar. Therefore, to identify a teacher frame
that matches the output frame of the shorter students, we can simply determine the
time points linked to the outputs of each model and match the student and each student
frames with the closest teacher frame.

However, as shown in Fig. 4.1, the output from a CTC model tends to be very spikey,
meaning that most output frames contain a <PAD> or <BLANK> token with only a few
frames associating a high probability to a non-pad token (label). Further, Fig. 4.1 also
shows that an emitted label is often not emitted in the middle of its corresponding sound,
but can be emitted when the speaker starts or stops pronouncing the phone.

Chapter 4. Distilling to shorter-output models 22

When M ≈ N/4, four teacher frames are output for every student frame, so choosing
the closest teacher frame is equivalent to sampling every fourth frame. Let us make the
slightly simplified assumption that only a single label is emitted for each corresponding
sound, which is randomly located within the time when the speaker utters the sound.
The average character takes an English speaker 60 ms to read out (Trauzettel-Klosinski
and Dietz, 2012), which corresponds to 4.5 Wav2vec 2.0 frames with a 25 ms window
and 10 ms. Thus, when sampling one in four (M/N) frames, where every group of
four frames correspond to one average spoken character, and a label is output once in
each such group, the probability of sampling every label is given by p = (M/N)M. In the
WSJ dataset, an utterance gets split into an average of N = 783 frames. Thus, for the
distillation from Wav2vec 2.0 to ContextNet or Citrinet, where M ≈N/4, the probability
of sampling every label from the teacher is p = (1/4)783/4 = 1.4×10−118 ≈ 0. Even if
we consider it acceptable to only extract at least half of all labels output by the teacher,
p = (1/4)783/8 = 1.2×10−59 per utterance.

This poses a problem because the student learns to mimic the extracted output, which
will consist mostly of frames that assign a high probability to <PAD> tokens (pad-frames).
Relaxing the above assumptions does not improve the calculated odds enough to make
this a viable alignment method.

Figure 4.1: Exemplary visualisation of the spike times of a model trained on a CTC
loss. The different coloured lines show the probability that a specific token is output at a
given time. The faint dotted line shows the probability of outputting a <PAD> at each time
step. The phonemes and words heard at each time interval are written underneath. The
Figure has been adapted from Alex Graves et al. (2006).

4.4 Max pooling: Choosing the best of four frames

As we have determined above that we can split the output into groups of 4, where each
group approximately corresponds to one spoken character, we can simplify the problem
from choosing the best M frames to choosing the best frame for each group of 4. Max
pooling uses the most confident frame, where the probability associated with a single
non-pad token is the highest.

This method is expected to greatly outperform the previous trivial method, as the
probability of choosing a frame for each group that outputs the corresponding character’s
label increases to 1. Thus, the probability of extracting at least one frame for each label
increases to p = 1783/4 = 1.

Chapter 4. Distilling to shorter-output models 23

The improvement to p = 1, however, is under the assumption that any set of 4 consecu-
tive frames contains one or more sounds that together correspond to at most a single
character. It is quickly obvious that this is not the case. For instance, when reading the
word choice the character pairs ch and ce each only produce a single sound.

When only the single frame with the highest confidence is chosen, all other frames
within the group get discarded, even if they may predict other important labels. For
the utterance choice, two adjacent frames within the same group may predict c and
subsequently h, but only one of them gets extracted. If this pattern is consistent across
multiple utterances, the student may learn incorrect sound-character correspondences.
In the above example, it could learn that the ch sound corresponds to the single character
h.

4.5 Discounted pooling: Choosing a bit of everything

To solve this issue of forgotten frames, I introduce average pooling where not only a
single frame is chosen, the average probability distribution over tokens is calculated
across all frames within a group. Averaging allows us to include information about all
the outputs of the teacher instead of only a sample.

However, if a group contains three pad-frames and only one frame that associates
a high probability to a non-pad token, the averaged probability distribution will be
biased towards the <PAD> . Thus, the student is taught that the sound corresponds to
a pad-token with a low probability of being something else. Just like max pooling
improved on the trivial method, we can improve on average pooling by averaging only
over frames predominantly predicting non-pad tokens.

As a generalisation of this, I propose discounted pooling, where all frames in a group
are averaged, but the weight of pad-frames is reduced by a discount factor fdiscount .

Thus, each target frame yyy∗i , for which the KL-divergence DKL(yyy∗i ∥yyyS
i) is calculated, is

given by

yyy∗i =
1

∥∑ j d(yyyT
j)∥1

4i

∑
j=4(i−1)

d(yyyT
j) (4.1)

where the discounting function is

d(yyy) =

{
yyy/ fdiscount if argmax(yyy) = <PAD>

yyy otherwise

This is a generalisation of average pooling, as setting fdiscount = 1 is equivalent to basic
averaging while taking the limit as fdiscount → ∞ is equivalent to ignoring all frames that
predict a <PAD> . Any other discount factor 1 < fdiscount < ∞ includes the pad-frames
but puts a greater emphasis on non-pad-frames. This may be the best choice, as some
pad-frames likely still contain relevant information. The ratio of pad to non-pad frames

Chapter 4. Distilling to shorter-output models 24

would also be encoded. A summary of interpretations of the discount factor is shown in
Table 4.1.

Table 4.1: Short summary of interpretations of different discount factors. A more detailed
explanation is found in Section 4.5.

fdiscount Interpretation

1 Average pooling
1 < f < ∞ Discounting <PAD>
∞ Ignoring <PAD>

While discounted pooling is a substantial improvement over choosing the closest teacher
frame, it still has difficulties with repeated characters. In CTC, a repeated character,
such as LL in HELLO is produced, by outputting L, followed by one or more <PAD>s ,
followed by another L. The pad-tokens in the middle are important, as the CTC decoder
reduces any frames that repeat the same character to a single instance of that character.
If the frame sequence outputting L**L (* representing <PAD>) is grouped and pooled,
it is indistinguishable from the sequence LL**. Thus, the student may in some instances
learn to produce only a single character whereas the teacher knows to output two. The
following methods all deal with this issue.

4.6 Dynamic: Squeeze to fit

As the problem of merging characters appears to be inherent to the pooling mechanism,
the new dynamic method departs from this approach. It instead replicates a greedy CTC
decoder incrementally until the resulting sequence reaches the student’s output length.

1. Remove pad-frames that are next to other pad-frames and non-pad-frames that
are next to frames outputting the same token. Choose the frames to remove
such that all groups (where all frames output the same token) have a similar
nremoved : noriginal ratio.

Remove frames from each group such that Removed frames from the longest
sequences (outputting the same token) first.

2. Remove pad-frames whose neighbours are different (e.g. E*L in H*E*L*L*O).

This maximally reduces the number of frames while still decoding to the same string.

If the sequence is still longer than the student’s output:

3. Remove all remaining pad-frames. These should be those whose two neighbours
produce the same token.

4. Remove all remaining tokens.

In particular, this method focuses on retaining the <PAD> between frames that output
the same token to teach the student that a sound corresponds to a repeated token in
the decoded string instead of only one. By ensuring that the nremoved : noriginal ratio

Chapter 4. Distilling to shorter-output models 25

stays roughly equal between the groups, we try to minimise time warping introduced by
removing frames at irregular intervals.

4.7 CNN: Learning to choose

An alternative approach, which was also used by Lee et al. (2022), is to bridge the
difference in output lengths with a CNN layer. While the authors use a deconvolutional
layer that increases the student’s output length to match the teacher, I use a convolutional
head on the teacher to match the student. I do this to keep the student’s architecture
constant for comparability with other distillation methods, but I expect the effectiveness
to be similar.

The CNN head is attached to the final teacher layer and uses a stride of 4. The kernel
size is set to 4 for comparison with the pooling methods. The teacher is fine-tuned with
a CTC loss. Using the downsampling CNN, the new teacher’s output now has the same
length as that of the student and we can proceed with standard knowledge distillation.

4.8 Aligning: Letting the student choose

While all of the above methods only consider the teacher when choosing the frames,
the primary goal is to improve the student by copying the teacher. As our student
is pre-trained and already correctly predicts some tokens, it may be useful to take
advantage of the student and let it inform our decisions on how to align frames.

4.8.1 Alignment algorithm

The alignment process works by computing a similarity matrix A ∈ RM×N where each
element is the dot product similarity between the ith student frame and jth teacher
frame: ai j = yyyS

i · yyyT
j . In matrix notation this is

A = S TT

where S =
[
yyyS

1, ...,yyy
S
M
]

and T =
[
yyyT

1 , ...,yyy
T
N
]
.

To determine the optimal alignment, we find a path through A (from a11 to aMN) that
passes through the elements with the highest similarity. An example is shown in Fig.
4.2.

4.8.2 Making aligning tractable

In terms of computational cost, this alignment method is significantly more expensive
than the other mechanisms described above. While calculating the similarity matrix
A is a simple multiplication that can be offloaded to the GPU, finding the optimal
(maximum similarity) path is a typical dynamic programming algorithm, which has
a time complexity of O(M ×N). In comparison, the trivial, pooling and dynamic
algorithms have a complexity of O(N).

Chapter 4. Distilling to shorter-output models 26

Teacher Frames
St

ud
en

t F
ra

m
es

H* * E* * L L * L O *H

H

*

L
*

O
*

Figure 4.2: Diagram showing an exemplary maximum similarity path between the
teacher frames on the bottom and the student frames on the left. The teacher output
correctly decodes to the string “HELLO”, while the student incorrectly outputs “HLO”
and is being trained using the alignment method described in Section 4.8. Each cell
is a pairing between a teacher and a student frame and is filled with the dot-product
similarity between the frames. The black line shows the best path from the first frame
of the student and teacher to eaches last frame while passing through cells where the
corresponding frames are maximally similar. The coloured cells are the groups of teacher
frames determined by the alignment to be matched to a single student frame.

To improve upon this, we can use the observation that movement through the matrix
has to be either to the right or diagonally to the bottom right see Fig. 4.2). We cannot
move vertically, as this could mean that a student frame has no target frame. Therefore,
a cell’s value (as per the Viterbi algorithm) is only dependent on the cells to its left. By
incrementally calculating the values of each column from the left, we can parallelise
computing the value of each cell in a column, as they are only dependent on the previous
column which has already been computed. This can further be offloaded to the GPU to
reduce the effective time complexity to O(N). The training time (20 epochs, batch size
4, on an NVIDIA GeForce RTX 2080 Ti) is reduced from approximately 60 days to 40
hours.

4.8.3 Using the alignment

Once we have computed an alignment between the student and teacher output, this
splits the teacher frames into M groups of varying length, as seen in Fig. 4.2. We can
apply the pooling methods from above to compress these groups down to a single target
frame. As before, average pooling on groups that predominantly consist of pad-frames,
will likely cause the group’s label(s) to be outweighed. The average of the second group
(orange) in Figure 4.2 will have a high probability associated with <PAD> and a low
probability for E. This is undesirable, as we want to teach the student to output an E at
the corresponding frame.

As a characteristic of the alignment process is that each group tends to only contain a
single label (bad alignments may have more) and some pad-frames, this suggests that
discounted or max pooling may lend themselves well for compressing these groups. An
evaluation of the pooling methods can be found in Section 5.4.6.

Chapter 4. Distilling to shorter-output models 27

4.8.4 Ignoring pad-frames (again)

Since the alignment algorithm finds the path through the matrix that passes through the
maximum number of similar frames and both the student and teacher tend to output
mostly <PAD> tokens, the algorithm may occasionally choose to not align a student
and teacher frame with the same label in favour of maximising the number of aligned
pad-frames.

To counter this undesirable side-effect, we can again ignore <PAD>s . However, as
pad-frames may still associate a relevant probability to other tokens, simply setting
their similarity to 0 is likely not optimal. The new similarity matrix A′ = S−pad TT

−pad
is computed from the S and T matrices that have the row corresponding to the <PAD>
token removed.

A more detailed analysis and the impact of using the non-pad alignment instead of the
default alignment are presented in section 5.4.5.

4.9 Summary

This chapter addresses the main challenge with distilling knowledge to models with
shorter output lengths: how to effectively align and compress the teacher’s longer output
to match the student’s shorter output without losing crucial information. Overcoming
this challenge is an important step towards enabling knowledge transfer between ASR
models with different output lengths while maintaining a low word error rate.

In this chapter, I began with a brief review of prior work, provided motivation for
tackling this problem, and formalised the problem statement. Subsequently, I explored
various approaches to aligning the teacher’s output with the student’s, ranging from
the trivial solution of selecting the closest frame to more advanced mechanisms such
as different types of pooling, dynamic frame removal while preserving the output
structure, and employing a CNN for learnable down-sampling. Further, I introduced
several variations of a Viterbi-based alignment algorithm that considers both the teacher
and student output during alignment. Due to the algorithm’s higher time complexity
compared to the other methods, I implemented parallelisation to reduce the effective
complexity from quadratic to linear as a function of the audio length.

The methods proposed here are explored further in the following chapter, where their
effectiveness and limitations are evaluated.

Chapter 5

Experiments on distilling to smaller
models

To compress Wav2vec 2.0 for automatic speech recognition into more efficient mod-
els with fewer parameters and faster inference time, the preceding two chapters have
focused on shrinking the Wav2vec 2.0 architecture as well as establishing the foun-
dation for distilling to smaller CNN-based networks. In particular, I have introduced
an initialisation approach for students derived from Wav2vec 2.0, by improving on
previous efforts. Furthermore, I have suggested a collection of algorithms to effectively
subsample the teacher output to match the student’s output length to enable distilling to
the shorter-output Citirnet and ContexNet models. These CNNs are of particular interest,
as they have recently been shown to achieve similar word error rates to transformer
models such as Wav2vec 2.0-BASE. I hope to further improve the CNNs’ performance
through knowledge distillation from the mentioned transformer.

This chapter details the experiments that were run to evaluate the subsampling al-
gorithms proposed in the previous chapter and compares the results from distilling
Wav2vec 2.0 to CNNs to distilling Wav2vec 2.0 to shallower versions of itself. Further,
the architectures’ performance is compared and the distillation approaches are evaluated
in the context of end-to-end ASR in resource-constrained environments.

The chapter begins by describing the experimental setup that was introduced in Section
3.3 in more detail and presenting the baselines. Following that, the first distillation
attempt from Wav2vec 2.0 to Quartznet is made and the methods for distilling to
shorter-output models are evaluated using Citrinet and ContextNet. Particular focus is
on the Alignment distillation algorithm that incorporates the student into subsampling
the teacher’s output. In a round of final experiments, each architecture’s number of
parameters as well as CPU and GPU inference times are measured to be evaluated in
the concluding chapter.

28

Chapter 5. Experiments on distilling to smaller models 29

5.1 Experimental setup

5.1.1 Dataset: WSJ

As previously mentioned in Section 3.3, the dataset used in this set of experiments is
the Wall Street Journal (WSJ) speech dataset (Paul and Baker, 1992). The WSJ0 and
WSJ1 releases have been merged to give a total of 81.5 hours of newspaper articles
read by 283 individuals from the United States in the joint training set. The releases’
testing sets are eval92 with 8 speakers reading a total of 42 minutes and dev93 with
10 speakers reading a little over 1 hour of articles.

Since no development set is provided, I split the joint training set into a new pair of
training and dev-set. Specifically, as the networks are supposed to be both speaker-
independent and able to recognise and transcribe previously unseen words, the utterances
in the eval92 and dev93 test sets are from different news articles to the training set and
from different speakers. This should also be the case for the new dev set. However, as
I have found no split such that no speakers or extracts overlap with the training set, I
have settled on splitting along the speaker boundary but keeping overlapping transcripts.
This causes the number of unseen, out-of-vocabulary words to be much lower in the dev
set than in the test sets and will likely lead to the models performing slightly better on
the dev set. Nonetheless, when taking the variability into account and acknowledging
that the dev-set will not recognise overfitting on transcripts very well, this split is better
than not using a development set at all.

Table 5.1: Statistics on the internal training and development sets and official testing
sets from the Wall Street Journal speech recognition dataset. Details on how the training
and development sets are built are found in Section 5.1.1.

Dataset Time Speakers Utterances Out of vocabulary
Overlapping

transcripts

Training 80h 28min 279 36,908 - -
Dev 1h 1min 4 508 0.6% 75%
eval92 42min 8 333 12.1% 0%
dev93 1h 5min 10 503 14.3% 0%

5.1.2 Implementation

The implementation of the experiments uses PyTorch (Paszke et al., 2019) with a highly
modified version of the Hugging Face Trainer (Wolf et al., 2020). In particular, I
have added an extension for knowledge distillation and custom logging. As some of
the models use the NVIDIA NeMo toolkit, I have also added functionality to train
models built from this toolkit to reduce variability between the models and improve
their comparability.

The dataset loader is also a custom implementation that aims to reduce the load on the
file server of the compute cluster that I ran the experiments on.

Chapter 5. Experiments on distilling to smaller models 30

The pre-trained Wav2vec 2.0-BASE model used in the experiments is taken from
the official release on Hugging Face (Facebook, 2021). The pre-trained QuartzNet,
Citrinet and ContextNet models are taken from NVIDIA’s catalog1. As their published
implementation of ContextNet uses an RNN-T decoder (A. Graves, 2012), I replace the
decoder with a linear layer and use a CTC loss. This maintains comparability between
CTC-based models and avoids the results being influenced by the decoder.

Throughout the research process, I planned to include the model by Li et al. (2019) that
my CNNs are based on and have manually implemented many parts of it, as open-source
versions of it had many errors. However, since the training of the model from a random
initialisation would have taken significantly too long for this dissertation and I could
only find a pre-trained release of the largest version with 333M parameters (compared
to the 95M of Wav2vec 2.0), it is not included here.

5.1.3 Training parameters

As in Chapter 3, the teacher and baseline is a Wav2vec 2.0-BASE model that is fine-
tuned for 50 epochs with a batch size of 4, an Adam optimiser (Kingma and Ba, 2017).
A grid search (see Appendix A) has determined an exponentially decaying learning rate
schedule, starting at 2.6×10−5 and decaying by 10% every epoch.

The QuartzNet, Citrinet and ContextNet models are fine-tuned or distilled for 20 epochs,
as that is when their validation loss tends to converge. Grid searches for each model have
determined their learning rates to be 1.4×10−5, 3×10−5, and 7×10−6 respectively.
For details see Appendix A. A learning rate schedule exponentially decaying by 10%
every epoch is used.

While the examples in the previous chapter assumed that each output token is equivalent
to a single character or <PAD> , the output length of Citrinet and ContextNet is marginally
too short to produce the correct transcription character by character. Therefore, both
models use a Sentencepiece tokeniser (Kudo and Richardson, 2018) as a variation of
Byte Pair Encoding (Sennrich et al., 2016). For consistency during distillation, a single
tokeniser is used across all models. The one trained alongside Citrinet is chosen, as that
avoids retraining the pre-trained model while ContextNet needs to be fine-tuned on the
new decoder anyways.

No Language Model is used, as that is beyond the focus of this series of experiments
and this dissertation.

5.2 Baselines

A set of baselines are implemented as comparisons to the distilled models. They are
fine-tuned from their pre-trained initialisation as described above. Their word error
rates on the development set are shown in Table 5.2. As expected, the transformer-based
Wav2vec 2.0 indeed attains the lowest WER. We can, however, also see that the other

1https://catalog.ngc.nvidia.com/

Chapter 5. Experiments on distilling to smaller models 31

models are also reaching similarly low error rates, with Citrinet being the next-lowest
and QuartzNet the highest.

Wav2vec 2.0 having the lowest dev-WER justifies the further investigation of distilling
to the other models to improve their performance.

Table 5.2: Word error rates achieved by fine-tuning pre-trained versions of the table’s
models. WER is calculated on the development set. These WERs are taken as baselines
against which the distillation efforts are evaluated. Training parameters are defined in
Section 5.1.3.

Model Dev WER (%)

Wav2vec 2.0 2.0
QuartzNet 4.9
Citrinet 2.8
ContextNet 4.1

5.3 Distilling to QuartzNet

With the baselines introduced, I begin with the easiest CNN to distil to: QuartzNet.
While the fine-tuned baseline performs worst on the dev-set (Table 5.2), its advantage
over the other two CNN-based models is that its output is the same length as that of
Wav2vec 2.0, making the distillation process trivial. Thus, to calculate the KD-Loss,
we can compare each student frame to the corresponding teacher frame and sum the
KL-Divergences. However, as seen in Table 5.3 the baseline with a WER of 4.7%
significantly outperforms the distilled model with 9.1%.

In the following sections on subsampling methods for Citrinet and ContextNet, I attempt
to achieve a WER equal to or lower than that of the distilled QuartzNet. As the Citrinet
and ContextNet baselines attain a slightly lower WER than QuartzNet, achieving a
comparable word error rate through knowledge distillation will mean that distilling by
subsampling is not much worse than distilling to the same output length.

Table 5.3: Comparison of the baseline WER for QuartzNet from Table 5.2 with the
QuartzNet model trained using knowledge distillation from Wav2vec 2.0. As the student
and teacher have the same output length, no subsampling is required. The word error
rates are calculated on the eval92 and dev93 sets in addition to the development set,
as the models are not tuned any further.

Model dev eval92 dev93

QuartzNet Baseline 4.9 9.9 11.7
QuartzNet Distilled 9.1 15.5 18.3

Chapter 5. Experiments on distilling to smaller models 32

5.4 Distilling to ContextNet & Citrinet by subsampling

The main emphasis in this chapter is on evaluating the subsampling algorithms proposed
in Chapter 4 to enable distilling to the shorter output-length models ContextNet and
Citrinet. The word error rates attained by distilling from the fine-tuned Wav2vec 2.0
to the two models using different subsampling methods are shown in Table 5.4. In
this section I go through the results, analysing the performance of each algorithm. I
specifically focus on evaluating variations of the alignment mechanism to determine the
best approach.

Table 5.4: Dev-WER of distilling Citrinet and ContextNet using various subsampling
methods. The alignment algorithm for ContextNet first fine-tunes the student before
distilling to it, as this is found to be the best approach (see Table 5.6). The baselines
(see Section 5.2) are added for comparison.

Subsampling method Citrinet ContextNet

Fine-tuned baseline 2.8 4.1

Closest frame 41.1 96.6
Max pooling 27.1 25.6
Average pooling 99.0 100
Discounted pooling (50) 28.4 22.4
Dynamic 75.3 56.8
CNN head 13.1 13.9
Alignment (w/o <PAD>) 9.7 7.4

5.4.1 Closest frame distillation

In Section 4.3, where the trivial subsampling method was introduced, I hypothesised
that it will sample mostly frames predicting <PAD> tokens and discard the important
frames that predict non-pad labels. The student would therefore learn to only output
pad-frames, as that is the most predictive of the extracted teacher sample. Looking
at the WER of ContextNet using the closest frame method in Table 5.4, the 96.6%
indicates that the model indeed learns to make predictions that are far from the ground
truth. Looking at the prediction output of the model, it produces primarily <PAD> tokens
with the occasional token, that seemingly coincidentally matches the ground truth.

While the WER for Citrinet is much worse than the fine-tuned baseline, it is far from
predicting only <PAD>s . Looking at the training loss and dev-WER progression in
Figure 5.1 we can clearly see that both are increasing and the model will also approach
predicting almost exclusively pad-frames.

5.4.2 Distilling by pooling

As max pooling is proposed as an improvement over the trivial approach, we can confirm
that it does indeed perform better than the previous method. The word error rates
converge (see Fig. 5.2) at 27.1% and 25.6% for Citrinet and ContextNet respectively, as

Chapter 5. Experiments on distilling to smaller models 33

Figure 5.1: Training KD-Loss and Dev-WER measured during the knowledge distillation
from Wav2vec 2.0 to Citrinet using the closest frame subsampling algorithm.

stated in Table 5.4. Interestingly, the dev-loss increases slightly while the training loss
and dev-WER decrease. Training is stopped as the dev-WER converges.

Figure 5.2: KD-Loss (of training and dev-set) and dev-WER are measured during the
knowledge distillation from Wav2vec 2.0 to Citrinet using the max pooling subsampling
algorithm.

To further improve upon max pooling, average pooling and discounted pooling include
all frames in a group instead of only the frame with the greatest confidence (see Sections
4.4 and 4.5). As expected, average pooling (implemented as discounted pooling with
fdiscount = 1) converges both models to a WER of 100% by learning to predict only
<PAD> tokens. The discounted pooling method, however, does improve on max pooling
for ContextNet, though it is slightly worse for Citrinet. The used fdiscount of 50 has
been determined by trying several discount factors between 1 and 100. Overall, it can
be argued that the accuracy difference between max pooling and discounted pooling is
negligible.

5.4.3 Dynamic distillation

The dynamic method is introduced to solve the problem that the pooling methods can
neglect labels in specific situations (see Section 4.6). The method handles these cases
by splitting the teacher’s output into unequal groups and removing frames that do not
contribute to the CTC output while trying to maintain the frames’ temporal position
relative to the input mostly constant. The WERs of 75.3% and 56.8% attained by

Chapter 5. Experiments on distilling to smaller models 34

distilling to Citrinet and ContextNet using this method (see Table 5.4) indicate other
factors may be more important when choosing which teacher frames to sample. The
pooling methods’ better performance indicates that the time warping introduced by
removing frames at irregular intervals, which also vary across utterances, significantly
harms the student’s accuracy.

5.4.4 Distilling through a CNN head

As a slight variation on the method used by Lee et al. (2022), I experiment with attaching
a learnable CNN head with a stride and kernel size of 4 onto the teacher. The CNN is
fine-tuned on top of the frozen Wav2vec 2.0 teacher.

Comparing the word error rates attained by distilling through the CNN to those achieved
by the pooling methods, we can see that the WER is roughly halved from 27.1% to
13.1% for Citrinet and from 25.6% to 13.9% for ContextNet. This makes the CNN head
so far the best approach for distilling to shorter output-length models. However, no
subsampling methods have so far come close to the fine-tuned baseline. subsampling
has also not yet achieved a WER equal to or lower than that of the distilled QuartzNet,
implying the problem of distilling to a shorter output length has not yet been overcome.

5.4.5 Aligning with and without padding

Subsampling by aligning makes use of the pre-trained student’s output to guide the
sampling of the teacher. As detailed in Section 4.8.1, a similarity matrix is computed
between the student and teacher frames through which we find a path that passes through
the most similar frames. This warps the time in accordance with the student instead of
being solely reliant on the teacher, as in the dynamic approach (see Section 5.4.3).

In Section 4.8.4 the issue is raised that comparing the similarity between all tokens
may cause the algorithm to prefer a path that primarily aligns pad-frames instead the
important, label outputting frames. An example of this is shown in Figure 5.3a. To fix
the issue, the similarity matrix calculation can be adjusted to ignore any similarities
between <PAD> tokens (see Section 4.8.4). Applying the adjustment yields the alignment
in Figure 5.3b. We can see that all similarities between <PAD>s get ignored and the path
now passes through the desired label tokens.

In text form, this fixes the alignment from

Teacher: .telel.sis..partof. li.. dayay’str ateg
Student: .tels ..as..part. ofho.lidayay.stra. g

where, for example, the teacher’s of aligns with a student’s <PAD> (represented by a
dot) and the student’s of is aligned with a teacher’s <PAD>. The improved version is

Teacher: .tels..is..part.ofho.lidayay’str ateg
Student: .tels..as..part.ofho.lidayay.stra. g

. Spaces are added to visually align tokens that encode strings of different lengths.

The effectiveness of this change is evaluated in Table 5.5.

Chapter 5. Experiments on distilling to smaller models 35

(a) Including <PAD> (b) Excluding <PAD>

Figure 5.3: Example of a misalignment incurred by maximising the similarity between any
token pair (Figure a). Ignoring the <PAD> token when calculating frame similarities (Figure
b) fixes the issue. Teacher and student outputs are on the x and y-axes respectively.
A field’s darkness indicates the similarity between the frame pair. The optimal path is
shown in orange. The falsely non-aligned frames are encircled in red in Figure a. A
fine-tuned Wav2vec 2.0 and pre-trained Citrinet are aligned.

5.4.6 Pooling of aligned groups

Since the alignment algorithm so far only matches each student frame with one or more
teacher frames, the determined groups have to be reduced to a single frame. Here the
same pooling methods as in Section 5.4.2 can be applied. The methods are evaluated
together with the choice of computing the similarity matrix with or without <PAD>
tokens, as the two mechanisms appear to be interdependent, as shown in Table 5.5.

We can see that computing the similarity matrix without <PAD>s generally performs
better. However, average pooling seemingly works best when the similarity is calculated
with <PAD>s , as this causes labels and pad-frames to be grouped independently (see
Fig. 5.3a). This does not happen when <PAD>s are excluded from the similarity matrix,
as seen in Fig. 5.3b.

Concluding the results from Table 5.5, performing max pooling on the groups deter-
mined by finding the best path through the similarity matrix computed without the
<PAD> tokens gives the lowest WER on Citrinet and, by extension, on ContextNet.

Table 5.5: WERs achieved on the dev-set by distilling from Wav2vec 2.0 to Citrinet using
the alignment subsampling method. The groups of teacher frames identified by the
alignment are pooled using the compared methods. Two alignment variants that either
include or exclude <PAD> tokens in the similarity computation (see Fig. 5.3) are also
evaluated.

Pooling method
Alignment

with <PAD> w/o <PAD>

Max pooling 100 9.7
Average pooling 48.8 100
Discounted pooling
(fdiscount = 50) 70.3 13.8

Chapter 5. Experiments on distilling to smaller models 36

5.4.7 Aligning to ContextNet

Since Citrinet has been pre-trained for ASR, it lends itself well for distilling using the
alignment algorithm. However, as the decoder of ContextNet has been switched for
a randomly initialised linear layer, the model’s output is unusable for alignment, as
seen in Table 5.6. To find a good initialisation for alignment distillation, I pre-train
ContextNet. However, as using the fine-tuned baseline from Section 5.2 defeats the
purpose of this experimentation on knowledge distillation since we could just keep the
baseline, I also fine-tunine ContextNet for only 1 epoch and alternatively use the result
of discounted pooling. I choose discounted pooling over the CNN head method, as the
latter would require an extra effort of fine-tuning the subsampling head.

To avoid a too high learning rate for the pre-trained ContextNet, I also run the experi-
ments with the learning rate of Citrinet (7×10−6).

As expected, Table 5.6 shows that the baseline initialisation achieves the best WER of
7.4%. The other two initialisations may also be used with their WERs of 11.9% and
12.2%, as they do not require prior fine-tuning.

Table 5.6: WERs achieved on the dev-set by distilling Wav2vec 2.0 to different initiali-
sations of ContextNet. Different learning rates are tried to account for the model being
pre-trained instead of having a randomly initialised docoder.

Initialisation
Learning Rate

3×10−5 7×10−6

Randomly init. decoder 100 100
Fine-tuned baseline 10.5 7.4
Fine-tuned for 1 Epoch 12.8 11.9
Discounted pooling 50 12.2 13.6

5.4.8 Summary of subsampling mechanisms

To conclude the section on distilling to ContextNet and Citrinet by subsampling from
Wav2vec 2.0, I have shown in Table 5.4 that the proposed algorithms and in particular
alignment are reasonable approaches for distilling to shorter-output models. Specifically,
the alignment algorithm using max pooling and ignoring <PAD>s attains a WER that
is comparable to the WER of QuartzNet on the development set. This is significant as
it shows that by subsampling we can distil to shorter-output models similarly well as
by using default knowledge distillation to a model with the same output length as the
teacher. Looking ahead at Table 5.7, the feasibility of subsampling is confirmed by the
WERs on the eval92 and dev93 sets.

The methods explored in this dissertation and in this series of experiments enable
the effective distillation to shorter-output models and lay the foundation for future
experiments in this area.

Chapter 5. Experiments on distilling to smaller models 37

5.5 Conclusion on distilling Wav2vec 2.0 to CNNs

From the above experiments and the results on the eval92 and dev93 sets in Table
5.7 we can clearly see that while subsampling for knowledge distillation is effective,
they do not beat the word error rates of the fine-tuned baselines for QuartzNet, Citrinet
and ContextNet. While the eval92 and dev93 WERs of the distilled ContextNet
somewhat approach the baseline’s WER, most baseline error rates are approximately
half of the distilled versions’ rates. Thus, knowledge distillation using a frame-level
KL-Divergence on the output of Wav2vec 2.0 for fine-tuning pre-trained QuartzNet,
ContextNet and Citrinet, and presumably other CNN-based ASR systems, does not
improve on the student’s word error rates compared to fine-tuning them using a CTC-
loss.

5.6 Application to resource-constrained environments

In order to evaluate the use of CNN-based ASR models in resource-constrained en-
vironments in contrast to distilling Wav2vec 2.0 to a smaller version of itself, this
section compares the architectures’ efficiencies. In particular, the parameter count, the
inference time on one CPU core as well as the GPU inference time are considered. The
trade-offs between accuracy and performance are shown in Table 5.7 and Figure 5.4.
The inference times are quoted as a real-time-factor (RTF). An RTF of 10 indicates that
the model transcribes an utterance 10× faster than real-time.

Analysing the approximate trends for each family of models as shown in Figures
5.4a and 5.4b, we can observe differences between the trade-offs on a CPU and GPU.
While the trend across CNN models is surprisingly in the direction of improving both
CPU inference time and accuracy, the trend is reversed on the GPU, where the larger
QuartzNet is worse but runs faster than the smaller Citrinet and ContextNet. The
distilled models mirror each of these trends, although with a higher WER than the
baselines. The trend when compressing Wav2vec 2.0 to fewer layers is similar for
both processing units. Distilling down to 6 layers has little impact on the accuracy
but improves the CPU and GPU real-time-factor by 33% and 63% respectively. The
2-layer model’s accuracy, however, is greatly impacted by the compression and the
improvement in performance is likely not worth it.

To minimise the impact on a host device’s computational resources while maximising
the transcription accuracy, it is important to consider the device’s properties when
deciding on the model. While edge devices with an inbuilt GPU, such as the NVIDIA
Jetson product family, would benefit more from using a lightweight model that is highly
performant on GPUs, such as the 6-layer Wav2vec 2.0, a CPU-only device such as a
Raspberry Pi would benefit more from using a Citrinet or ContextNet, as they achieve
the lowest WER on the eval92 and dev93 sets and have the best performance on the
tested CPU. ContextNet has a lower parameter count and faster CPU inference, while
Citrinet is not significantly slower despite attaining a better WER. The performance on
other processing units may vary slightly.

Chapter 5. Experiments on distilling to smaller models 38

Table 5.7: WERs achieved by the best models from each set of experiments, evaluated
on the development, eval92 and dev93 sets. The error rates are compared against the
parameter count, CPU and GPU inference speeds for each model. The inference speeds
are real-time-factors (RTF), where an RTF of 10 means that the model transcribes the
audio 10× faster than real-time. The distilled models use the best initialisations (for
Wav2vec 2.0) and subsampling methods (for ContextNet and Citrinet) determined in
Sections 3.4 and 5.4 respectively.

WER (%)

Model dev eval92 dev93 # Parameters CPU inference GPU inference

Wav2vec 2.0 2.0 9.5 10.6 95.2M 3 800
Wav2vec 2.0 (10L) 2.5 9.9 11.4 81.0M 3 900
Wav2vec 2.0 (6L) 3.8 10.5 12.6 52.6M 4 1300
Wav2vec 2.0 (2L) 21.1 25.6 30.5 24.3M 6 2300

QuartzNet 4.9 9.9 11.7
19.9M 6 300

QuartzNet distilled 9.1 15.5 18.3

ContextNet 4.1 6.4 7.9 9.8M 25 200
ContextNet distilled 7.4 8.9 11.6

Citrinet 2.8 5.1 7.0
10.3M 19 200

Citrinet distilled 9.7 13.6 18.3

(a) CPU performance – WER trade-off (b) GPU performance – WER trade-off

Figure 5.4: Visualisation of the trade-off between the models’ WERs and their inference
time on a CPU (Figure a) and GPU (Figure b). The WER on the y-axis is the mean
between each model’s rates on eval92 and dev93. The models are coloured by their
families. Baseline and distilled CNNs are distinguished, as the distilled models achieve
a consistently higher WER than the baseline. The trend for each family of models is
approximated by a linear trendline in that family’s colour. A model is preferred to be in
the bottom right corner. The top left corner of each plot should be avoided.

Chapter 6

Conclusion

In this project, I explore how knowledge distillation can be used to reduce the size and
inference time of existing end-to-end models for Automatic Speech Recognition, as
an effort towards high-quality on-device transcription in resource-constrained environ-
ments. Experiments are carried out to test hypotheses on finding a good initialisation
for students that are derived from the teacher, where Wav2vec 2.0 (Baevski et al., 2020)
is used as a representative model. Further experiments on distilling from Wav2vec 2.0
to various CNN-based ASR architectures are conducted. The following contributions
are made.

1. It has been identified that by copying the teacher’s middle layers to the reduced
student as its initialisation, we can attain the best WER after knowledge distilla-
tion. This has been shown to hold for 2-layer and 6-layer students of Wav2vec
2.0 with a reduction of the error rate by up to 50% when using the optimal initial-
isation. As the number of student layers is further increased to 10, the impact of
choosing which layers to copy is diminished, as long as layers are copied.

2. A range of subsampling methods have been proposed and evaluated for knowledge
distillation to students with shorter output lengths. By aligning the teacher frames
to the student output using a non-pad similarity matrix and reducing the teacher
frames using max pooling we can distil to shorter output length models equally
well as to models of the same output length as the teacher. This is useful outside
of this dissertation for more flexible cross-architecture knowledge distillation of
CTC-based models including for the exploration of thinner architectures with
shorter output lengths.

3. The effectiveness of knowledge distillation from Wav2vec 2.0 (as a representa-
tive transformer) to a variety of CNNs with and without subsampling has been
evaluated, finding that it does not achieve better accuracy than fine-tuning using
CTC.

4. The trade-off between achieving a low WER and a fast inference on CPUs and
GPUs is evaluated, finding that CNNs such as ContextNet or Citrinet are well
suited for resource-constrained environments, as they attain the best accuracy
and the fastest inference on CPUs among the tested models. In contrast, a 6-

39

Chapter 6. Conclusion 40

layer Wav2vec 2.0 distilled from a well-copied initialisation achieves a fast GPU
inference time while maintaining a low WER.

6.1 Limitations

As this project was limited in time and resources, I have incurred the following limita-
tions.

1. I have shown for Wav2vec 2.0 that a student can be initialised well by copying
the middle layers from the teacher. Whether this holds for other architectures and
other speech processing tasks as well as other deep learning fields remains open.

2. As a limitation of the WSJ dataset, my development set had a significant vocabu-
lary and transcript overlap with the training set, impacting its generalisation to
not only the eval92 and dev93 sets but also across other datasets. This is most
importantly seen in Table 5.7 where Wav2vec 2.0 achieves a lower WER than
ContextNet and Citrinet on the development set, justifying the distillation from
the former to the latter. However, testing on eval92 and dev93 reveals that in
fact ContextNet and Citrinet attain a better accuracy.

6.2 Future work

As an extension of this dissertation, the following work can be done in the future.

1. An extension of the initialisation strategy can be explored for different model
architectures in ASR, across other speech processing tasks as well as other deep
learning fields. A generalised initialisation recommendation for knowledge distil-
lation students of the same architecture as the teacher would a useful contribution.

2. The subsampling algorithm can be extended to a supersampling that enables
knowledge distillation to longer-output models. This may be useful for distilling
from thinner architectures or from architectures with more downsampling layers.
The proposed algorithms can be used as a starting point.

3. The experiments on initialisation have found that by copying the teacher’s layers,
some information is transferred to the student, as opposed to a random initialisa-
tion. By flipping the knowledge transfer such that a small model is first trained
and subsequently some layers copied to initialise a larger network we may be
able to train a large neural network faster while possibly sacrificing accuracy.

Bibliography

Baevski, Alexei et al. (Oct. 2020). wav2vec 2.0: A Framework for Self-Supervised
Learning of Speech Representations. arXiv:2006.11477 [cs, eess]. DOI: 10.48550/
arXiv.2006.11477. URL: http://arxiv.org/abs/2006.11477 (visited on
10/22/2022).

Benito, Diego de et al. (June 2019). “Exploring convolutional, recurrent, and hybrid
deep neural networks for speech and music detection in a large audio dataset”. In:
EURASIP Journal on Audio, Speech, and Music Processing 2019. DOI: 10.1186/
s13636-019-0152-1.

Bucilă, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil (2006). “Model Com-
pression”. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’06. event-place: Philadelphia, PA,
USA. New York, NY, USA: Association for Computing Machinery, pp. 535–541.
ISBN: 1-59593-339-5. DOI: 10.1145/1150402.1150464. URL: https://doi.org/
10.1145/1150402.1150464.

Chang, Heng-Jui, Shu-wen Yang, and Hung-yi Lee (Apr. 2022). DistilHuBERT:
Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT.
arXiv:2110.01900 [cs, eess]. DOI: 10.48550/arXiv.2110.01900. URL: http:
//arxiv.org/abs/2110.01900 (visited on 10/24/2022).

Chia, Yew Ken, Sam Witteveen, and Martin Andrews (Sept. 2019). Transformer to CNN:
Label-scarce distillation for efficient text classification. arXiv:1909.03508 [cs, stat].
DOI: 10.48550/arXiv.1909.03508. URL: http://arxiv.org/abs/1909.03508
(visited on 10/24/2022).

Collobert, Ronan, Christian Puhrsch, and Gabriel Synnaeve (Sept. 2016). Wav2Letter:
an End-to-End ConvNet-based Speech Recognition System. arXiv:1609.03193 [cs].
DOI: 10.48550/arXiv.1609.03193. (Visited on 03/24/2023).

Davis, K. H., R. Biddulph, and S. Balashek (Nov. 1952). “Automatic Recognition
of Spoken Digits”. en. In: The Journal of the Acoustical Society of America 24.6,
pp. 637–642. ISSN: 0001-4966. DOI: 10.1121/1.1906946. URL: http://asa.
scitation.org/doi/10.1121/1.1906946 (visited on 03/22/2023).

Facebook (Jan. 2021). facebook/wav2vec2-base-960h · Hugging Face. URL: https:
//huggingface.co/facebook/wav2vec2-base-960h (visited on 04/13/2023).

Facebook-Research (Dec. 2022). fairseq/examples/wav2vec at main · facebookre-
search/fairseq. en. URL: https://github.com/facebookresearch/fairseq
(visited on 03/25/2023).

41

https://doi.org/10.48550/arXiv.2006.11477
https://doi.org/10.48550/arXiv.2006.11477
http://arxiv.org/abs/2006.11477
https://doi.org/10.1186/s13636-019-0152-1
https://doi.org/10.1186/s13636-019-0152-1
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.48550/arXiv.2110.01900
http://arxiv.org/abs/2110.01900
http://arxiv.org/abs/2110.01900
https://doi.org/10.48550/arXiv.1909.03508
http://arxiv.org/abs/1909.03508
https://doi.org/10.48550/arXiv.1609.03193
https://doi.org/10.1121/1.1906946
http://asa.scitation.org/doi/10.1121/1.1906946
http://asa.scitation.org/doi/10.1121/1.1906946
https://huggingface.co/facebook/wav2vec2-base-960h
https://huggingface.co/facebook/wav2vec2-base-960h
https://github.com/facebookresearch/fairseq

BIBLIOGRAPHY 42

Fu, Yanzhe et al. (Mar. 2023). DistillW2V2: A Small and Streaming Wav2vec 2.0 Based
ASR Model. arXiv:2303.09278 [cs, eess]. URL: http://arxiv.org/abs/2303.
09278 (visited on 03/29/2023).

Graves, A. (Nov. 2012). “Sequence Transduction with Recurrent Neural Networks”. In:
ArXiv. (Visited on 03/25/2023).

Graves, Alex et al. (2006). “Connectionist Temporal Classification: Labelling Un-
segmented Sequence Data with Recurrent Neural Networks”. In: Proceedings of
the 23rd International Conference on Machine Learning. ICML ’06. event-place:
Pittsburgh, Pennsylvania, USA. New York, NY, USA: Association for Computing
Machinery, pp. 369–376. ISBN: 1-59593-383-2. DOI: 10.1145/1143844.1143891.
URL: https://doi.org/10.1145/1143844.1143891.

Gulati, Anmol et al. (May 2020). Conformer: Convolution-augmented Transformer
for Speech Recognition. arXiv:2005.08100 [cs, eess]. DOI: 10.48550/arXiv.2005.
08100. URL: http://arxiv.org/abs/2005.08100 (visited on 10/24/2022).

Han, Wei et al. (May 2020). ContextNet: Improving Convolutional Neural Networks
for Automatic Speech Recognition with Global Context. arXiv:2005.03191 [cs, eess].
DOI: 10.48550/arXiv.2005.03191. URL: http://arxiv.org/abs/2005.03191
(visited on 10/23/2022).

He, Kaiming et al. (Dec. 2015). Deep Residual Learning for Image Recognition.
arXiv:1512.03385 [cs]. URL: http://arxiv.org/abs/1512.03385 (visited
on 03/24/2023).

Hendrycks, Dan and Kevin Gimpel (June 2016). “Gaussian Error Linear Units
(GELUs)”. In: arXiv: Learning. (Visited on 03/23/2023).

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (Mar. 2015). Distilling the Knowledge in
a Neural Network. arXiv:1503.02531 [cs, stat]. DOI: 10.48550/arXiv.1503.02531.
URL: http://arxiv.org/abs/1503.02531 (visited on 10/24/2022).

Howard, Andrew G. et al. (Apr. 2017). MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. arXiv:1704.04861 [cs]. URL: http://
arxiv.org/abs/1704.04861 (visited on 03/24/2023).

Hsu, Wei-Ning et al. (June 2021). HuBERT: Self-Supervised Speech Representation
Learning by Masked Prediction of Hidden Units. arXiv:2106.07447 [cs, eess]. DOI:
10.48550/arXiv.2106.07447. URL: http://arxiv.org/abs/2106.07447
(visited on 10/22/2022).

Hu, Jie et al. (Aug. 2020). “Squeeze-and-Excitation Networks”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 42.8, pp. 2011–2023. ISSN: 0162-
8828, 2160-9292, 1939-3539. DOI: 10.1109/TPAMI.2019.2913372. URL: https:
//ieeexplore.ieee.org/document/8701503/ (visited on 03/24/2023).

Ioffe, Sergey and Christian Szegedy (Mar. 2015). Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs].
URL: http://arxiv.org/abs/1502.03167 (visited on 03/24/2023).

Kingma, Diederik P. and Jimmy Ba (Jan. 2017). Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs]. URL: http://arxiv.org/abs/1412.6980
(visited on 04/13/2023).

Kriman, Samuel et al. (Oct. 2019). QuartzNet: Deep Automatic Speech Recognition with
1D Time-Channel Separable Convolutions. arXiv:1910.10261 [eess]. URL: http:
//arxiv.org/abs/1910.10261 (visited on 03/22/2023).

http://arxiv.org/abs/2303.09278
http://arxiv.org/abs/2303.09278
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.48550/arXiv.2005.08100
https://doi.org/10.48550/arXiv.2005.08100
http://arxiv.org/abs/2005.08100
https://doi.org/10.48550/arXiv.2005.03191
http://arxiv.org/abs/2005.03191
http://arxiv.org/abs/1512.03385
https://doi.org/10.48550/arXiv.1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.48550/arXiv.2106.07447
http://arxiv.org/abs/2106.07447
https://doi.org/10.1109/TPAMI.2019.2913372
https://ieeexplore.ieee.org/document/8701503/
https://ieeexplore.ieee.org/document/8701503/
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1910.10261
http://arxiv.org/abs/1910.10261

BIBLIOGRAPHY 43

Kudo, Taku and John Richardson (Aug. 2018). SentencePiece: A simple and lan-
guage independent subword tokenizer and detokenizer for Neural Text Processing.
arXiv:1808.06226 [cs]. URL: http://arxiv.org/abs/1808.06226 (visited on
03/31/2023).

Lecun, Y. et al. (Nov. 1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278–2324. ISSN: 00189219. DOI: 10.1109/
5.726791. URL: http://ieeexplore.ieee.org/document/726791/ (visited on
03/24/2023).

Lee, Yeonghyeon et al. (July 2022). FitHuBERT: Going Thinner and Deeper for Knowl-
edge Distillation of Speech Self-Supervised Learning. arXiv:2207.00555 [cs, eess].
DOI: 10.48550/arXiv.2207.00555. URL: http://arxiv.org/abs/2207.00555
(visited on 10/24/2022).

Li, Jason et al. (Aug. 2019). Jasper: An End-to-End Convolutional Neural Acoustic
Model. arXiv:1904.03288 [cs, eess]. DOI: 10.48550/arXiv.1904.03288. URL:
http://arxiv.org/abs/1904.03288 (visited on 10/23/2022).

Liu, Yufan et al. (July 2022). Cross-Architecture Knowledge Distillation. URL: http:
//arxiv.org/abs/2207.05273 (visited on 10/17/2022).

Majumdar, Somshubra et al. (Apr. 2021). Citrinet: Closing the Gap between Non-
Autoregressive and Autoregressive End-to-End Models for Automatic Speech Recog-
nition. arXiv:2104.01721 [eess]. URL: http://arxiv.org/abs/2104.01721
(visited on 03/22/2023).

Nair, Vinod and Geoffrey E. Hinton (June 2010). “Rectified Linear Units Improve
Restricted Boltzmann Machines”. In: (visited on 03/24/2023).

NVIDIA (June 2021a). STT En Citrinet 256 — NVIDIA NGC. en. URL: https://
catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_
citrinet_256 (visited on 03/25/2023).

– (Sept. 2021b). STT En ContextNet 256 MLS — NVIDIA NGC. en. URL: https:
//catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_
contextnet_256_mls (visited on 03/25/2023).

– (Mar. 2022). STT En Quartznet15x5 — NVIDIA NGC. en. URL: https://catalog.
ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_quartznet15x5
(visited on 03/25/2023).

Papers with Code (2022). LibriSpeech test-clean Benchmark (Speech Recognition).
en. URL: https://paperswithcode.com/sota/speech- recognition- on-
librispeech-test-clean (visited on 10/24/2022).

Pasad, Ankita, Ju-Chieh Chou, and Karen Livescu (Dec. 2022). Layer-wise Analysis of
a Self-supervised Speech Representation Model. arXiv:2107.04734 [cs, eess]. URL:
http://arxiv.org/abs/2107.04734 (visited on 03/29/2023).

Paszke, Adam et al. (Dec. 2019). PyTorch: An Imperative Style, High-Performance
Deep Learning Library. arXiv:1912.01703 [cs, stat]. URL: http://arxiv.org/
abs/1912.01703 (visited on 04/13/2023).

Paul, Douglas B. and Janet M. Baker (1992). “The design for the wall street journal-
based CSR corpus”. en. In: Proceedings of the workshop on Speech and Natural
Language - HLT ’91. Harriman, New York: Association for Computational Lin-
guistics, p. 357. ISBN: 9781558602724. DOI: 10.3115/1075527.1075614. URL:

http://arxiv.org/abs/1808.06226
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://ieeexplore.ieee.org/document/726791/
https://doi.org/10.48550/arXiv.2207.00555
http://arxiv.org/abs/2207.00555
https://doi.org/10.48550/arXiv.1904.03288
http://arxiv.org/abs/1904.03288
http://arxiv.org/abs/2207.05273
http://arxiv.org/abs/2207.05273
http://arxiv.org/abs/2104.01721
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_citrinet_256
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_citrinet_256
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_citrinet_256
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_contextnet_256_mls
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_contextnet_256_mls
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_contextnet_256_mls
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_quartznet15x5
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_quartznet15x5
https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean
https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean
http://arxiv.org/abs/2107.04734
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.3115/1075527.1075614

BIBLIOGRAPHY 44

http://portal.acm.org/citation.cfm?doid=1075527.1075614 (visited on
04/13/2023).

Peng, Zilun et al. (2021). “Shrinking Bigfoot: Reducing wav2vec 2.0 footprint”. en.
In: Proceedings of the Second Workshop on Simple and Efficient Natural Language
Processing. Virtual: Association for Computational Linguistics, pp. 134–141. DOI:
10.18653/v1/2021.sustainlp-1.14. URL: https://aclanthology.org/
2021.sustainlp-1.14 (visited on 03/29/2023).

Roger, Vincent, Jérôme Farinas, and Julien Pinquier (Aug. 2022). “Deep neural networks
for automatic speech processing: a survey from large corpora to limited data”. en.
In: EURASIP Journal on Audio, Speech, and Music Processing 2022.1, p. 19. ISSN:
1687-4722. DOI: 10.1186/s13636-022-00251-w. URL: https://asmp-euras
ipjournals.springeropen.com/articles/10.1186/s13636-022-00251-w
(visited on 04/13/2023).

Sanh, Victor et al. (Feb. 2020). DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. arXiv:1910.01108 [cs]. URL: http://arxiv.org/abs/1910.
01108 (visited on 03/29/2023).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (June 2016). Neural Machine
Translation of Rare Words with Subword Units. arXiv:1508.07909 [cs]. URL: http:
//arxiv.org/abs/1508.07909 (visited on 03/31/2023).

Stevens, S. S., J. Volkmann, and E. B. Newman (Jan. 1937). “A Scale for the Measure-
ment of the Psychological Magnitude Pitch”. en. In: The Journal of the Acoustical
Society of America 8.3, pp. 185–190. ISSN: 0001-4966. DOI: 10.1121/1.1915893.
URL: http://asa.scitation.org/doi/10.1121/1.1915893 (visited on
03/22/2023).

Trauzettel-Klosinski, Susanne and Klaus Dietz (Aug. 2012). “Standardized Assessment
of Reading Performance: The New International Reading Speed Texts IReST”. en. In:
Investigative Opthalmology & Visual Science 53.9, p. 5452. ISSN: 1552-5783. DOI:
10.1167/iovs.11-8284. URL: http://iovs.arvojournals.org/article.
aspx?doi=10.1167/iovs.11-8284 (visited on 04/06/2023).

Vaswani, Ashish et al. (Dec. 2017). Attention Is All You Need. arXiv:1706.03762 [cs].
DOI: 10.48550/arXiv.1706.03762. URL: http://arxiv.org/abs/1706.03762
(visited on 10/23/2022).

Wang, Dong, Xiaodong Wang, and Shaohe Lv (Aug. 2019). “An Overview of End-to-
End Automatic Speech Recognition”. en. In: Symmetry 11.8, p. 1018. ISSN: 2073-
8994. DOI: 10.3390/sym11081018. URL: https://www.mdpi.com/2073-8994/
11/8/1018 (visited on 04/13/2023).

Wolf, Thomas et al. (July 2020). HuggingFace’s Transformers: State-of-the-art Natural
Language Processing. arXiv:1910.03771 [cs]. URL: http://arxiv.org/abs/1910.
03771 (visited on 04/13/2023).

Yang, Xiaoyu et al. (Mar. 2023). Knowledge Distillation from Multiple Foundation
Models for End-to-End Speech Recognition. arXiv:2303.10917 [cs, eess]. URL: http:
//arxiv.org/abs/2303.10917 (visited on 03/29/2023).

Yoon, Ji Won et al. (2021). “TutorNet: Towards Flexible Knowledge Distillation for
End-to-End Speech Recognition”. In: IEEE/ACM Transactions on Audio, Speech, and
Language Processing 29. arXiv:2008.00671 [eess], pp. 1626–1638. ISSN: 2329-9290,

http://portal.acm.org/citation.cfm?doid=1075527.1075614
https://doi.org/10.18653/v1/2021.sustainlp-1.14
https://aclanthology.org/2021.sustainlp-1.14
https://aclanthology.org/2021.sustainlp-1.14
https://doi.org/10.1186/s13636-022-00251-w
https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-022-00251-w
https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-022-00251-w
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
https://doi.org/10.1121/1.1915893
http://asa.scitation.org/doi/10.1121/1.1915893
https://doi.org/10.1167/iovs.11-8284
http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.11-8284
http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.11-8284
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.3390/sym11081018
https://www.mdpi.com/2073-8994/11/8/1018
https://www.mdpi.com/2073-8994/11/8/1018
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2303.10917
http://arxiv.org/abs/2303.10917

BIBLIOGRAPHY 45

2329-9304. DOI: 10.1109/TASLP.2021.3071662. URL: http://arxiv.org/abs/
2008.00671 (visited on 10/24/2022).

Zeiler, Matthew D. et al. (June 2010). “Deconvolutional networks”. In: 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. ISSN:
1063-6919, pp. 2528–2535. DOI: 10.1109/CVPR.2010.5539957.

https://doi.org/10.1109/TASLP.2021.3071662
http://arxiv.org/abs/2008.00671
http://arxiv.org/abs/2008.00671
https://doi.org/10.1109/CVPR.2010.5539957

Appendix A

Learning Rate Grid Searches

The plots in Figure A.1 show the results for grid searches on the learning rate of the
model architectures used. The training parameters are described in Section 5.1.3. Each
model is fine-tuned on the WSJ training set. The best learning rates found are shown in
Table A.1.

Table A.1: Best learning rates (LR) found in the grid searches from Figure A.1.

Model Best LR

Wav2vec 2.0 2.6×10−5

QuartzNet 1.4×10−5

ContextNet 3×10−5

Citrinet 7×10−6

46

Appendix A. Learning Rate Grid Searches 47

(a) Wav2vec 2.0 (b) QuartzNet

(c) ContextNet (d) Citrinet

Figure A.1: Grid searches for determining the best starting learning rate for various
models. The learning rate is exponentially decaying by 10% per epoch. Fine-tuning was
done for 20 epochs.

Appendix B

Dev-Loss and Dev-WER for student
initialisations

Figure B.1 shows the knowledge distillation loss (see eq. 2.4) and word error rate on
the development set across epochs for various student initialisations. The students are
initialised according to the experiments outlined in Section 3.3 and trained using knowl-
edge distillation from a fine-tuned Wav2vec 2.0. The training is done in accordance
with the parameters outlined in Section 5.1.3.

48

Appendix B. Dev-Loss and Dev-WER for student initialisations 49

(a) 2-layer students

(b) 6-layer students

(c) 10-layer students

Figure B.1: Wav2vec 2.0 models with different numbers of transformer layers, trained
using knowledge distillation from a fine-tuned Wav2vec 2.0. The students are initialised
by copying layers from the teacher according to the experiments outlined in Section 3.3.
The plots show the knowledge distillation loss and WER on the development set across
epochs for each student.

	Introduction
	Motivation
	Contributions
	Structure

	Background
	Digital representations of speech
	Wav2vec 2.0
	CNN models
	Training for ASR using Connectionist Temporal Classification
	Knowledge Distillation
	Criticism of Related Work

	Preliminary experiments on student initialisation
	Prior work
	Hypotheses on good layer selection
	Experiments
	Results and Discussion
	Summary

	Distilling to shorter-output models
	Prior work
	Problem statement
	Trivial solution: Choosing the closest frame
	Max pooling: Choosing the best of four frames
	Discounted pooling: Choosing a bit of everything
	Dynamic: Squeeze to fit
	CNN: Learning to choose
	Aligning: Letting the student choose
	Alignment algorithm
	Making aligning tractable
	Using the alignment
	Ignoring pad-frames (again)

	Summary

	Experiments on distilling to smaller models
	Experimental setup
	Dataset: WSJ
	Implementation
	Training parameters

	Baselines
	Distilling to QuartzNet
	Distilling to ContextNet & Citrinet by subsampling
	Closest frame distillation
	Distilling by pooling
	Dynamic distillation
	Distilling through a CNN head
	Aligning with and without padding
	Pooling of aligned groups
	Aligning to ContextNet
	Summary of subsampling mechanisms

	Conclusion on distilling Wav2vec 2.0 to CNNs
	Application to resource-constrained environments

	Conclusion
	Limitations
	Future work

	Learning Rate Grid Searches
	Dev-Loss and Dev-WER for student initialisations

