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Abstract
As deep neural networks grow larger, efficient and distributed training approaches
become increasingly relevant. While existing distributive training methods like data
parallelism and pipeline parallelism can accelerate training, the former assumes that
the full model can fit on a single GPU, and the latter, depending on the exact approach
used, either underutilises the GPUs or introduces training inconsistencies. This thesis
investigates the Method of Auxiliary Coordinates (MAC) as an alternative optimisation
framework designed for distributed training by splitting up a model into its constituent
layers and training them in parallel on auxiliary tasks, regularly synchronising these
tasks.

The thesis in particular proposes extensions to MAC to enable its application to modern
deep learning architectures and allow it to be trained on various tasks. One key contri-
bution is the explicit formulation of two approaches to decoupling the internal workings
of MAC. This decoupling improves its distributability and reduces the data that is
communicated between machines during training. Support for custom loss functions
beyond mean squared error is also added.

A theoretical analysis quantifies the potential speedup offered by distributed MAC over
standard techniques like stochastic gradient descent or Adam. Empirical evaluations on
phone classification tasks demonstrate MAC’s ability to train multi-layer perceptrons as
well as Transformer-based models to lower losses than SGD in less time. The results
also provide insights into how to select appropriate hyperparameters for MAC. The
impact of choosing where to split a model is also evaluated.

While further research is needed into principled hyperparameter tuning and reduction
of data transfer during training, this work finds MAC to be a promising optimisation
framework for distributively training deep learning models.
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Chapter 1

Introduction

Deep learning has rapidly become the dominant approach across various domains, with
larger models pushing the boundaries of computer vision, natural language processing
and speech recognition (Chai et al., 2021; Roger et al., 2022; Torfi et al., 2020). However,
as models grow larger, training becomes slower and more costly, computationally and
environmentally (Dhar, 2020; Lacoste et al., 2019). Hence, the need for efficient and
scalable training methods becomes increasingly important.

Over the years several approaches have been proposed and are being used to distribute
models across multiple machines to speed up their training (Nichols et al., 2021).
However, most of these approaches rely on standard optimisation techniques such as
stochastic gradient descent (SGD), which are inherently sequential and require each
datapoint to be passed through the full network (and propagated back) before the model
is updated and the next iteration can begin. This restriction limits the parallelism that
can be achieved.

1.1 Motivation

The Method of Auxiliary Coordinates (MAC), proposed by Carreira-Perpiñán and
Wang in 2014, presents an alternative optimisation framework that is designed to be
distributable. By introducing auxiliary variables (‘coordinates’) after each layer, MAC
effectively splits up the model, allowing each layer’s parameters to be updated in parallel
on separate machines.

MAC’s fundamentally different approach to parallelism makes it an interesting optimi-
sation method to investigate. Although this thesis merely investigates it out of curiosity,
if the results are promising, MAC could even be a genuine alternative to some of the
existing parallelism approaches.

1.2 Previous work (MInf 1)

In the pursuit of efficiency and modularity, last year’s MInf 1 project (Martin, 2023) in-
vestigated the use of cross-architecture knowledge distillation, where a student network

1



Chapter 1. Introduction 2

gets trained to copy the output of a larger teacher network of a different architecture,
to speed up the inference time of end-to-end speech recognition models. To this end,
I first developed a guideline on how best to initialise the student models, and further
proposed an algorithm to enable the distillation between two models with mismatched
output dimensions. Both, the initialisation guideline and especially the distillation
algorithm are useful to research outside of the MInf 1 project to enable and improve
cross-architecture knowledge for speech recognition.

This thesis is a continuation of this pursuit, investigating how we can speed up training
by modularising a network – splitting it up, training each layer on a different machine,
and reassembling for inference. Similarly to the previous project, I will be using
a speech processing task, specifically phone classification, to evaluate the method’s
effectiveness.

1.3 Contributions

The primary contributions of this thesis are:

• Extensions to the Method of Auxiliary Coordinates to enable its application
to modern deep learning architectures and tasks beyond autoencoding. This is
demonstrated by training an MLP and a Transformer-based model on phone
classification.

• Proposal of two approaches for decoupling the auxiliary coordinate updates in
the Z-Step to significantly improve distributability.

• A theoretical analysis of the potential speedup offered by distributed MAC over
standard techniques like SGD or Adam.

• An empirical evaluation of MAC’s performance on phone classification, again
comparing it to SGD and Adam.

• Insights into effectively leveraging MAC’s performance by splitting models into
appropriate groups and selecting good hyperparameters.

1.4 Structure

Following this introduction, Chapter 2 begins by providing the relevant background
on optimisation techniques for deep learning and details on the original formulation
of the Method of Auxiliary Coordinates by Carreira-Perpiñán and Wang. It also
highlights key limitations of their work, thereby motivating the extensions proposed
in this thesis. Related attempts at accelerating the training of large models as well as
an introduction to speech processing and phone classification are also covered in brief.
Following this, Chapter 3 presents the core extensions, in particular the formulations
for partially and fully decoupling the auxiliary coordinate updates to enable a more
efficient distribution of MAC. It also discusses how MAC can be applied to modern
architectures, custom loss functions, and dropout. Importantly, the chapter also provides
a theoretical analysis of the potential speedup offered by distributed MAC. Chapter 4
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then details the experimental evaluation, comparing the convergence and computational
performance of MAC against SGD and Adam on phone classification tasks. It also
provides insights into setting hyperparameters and grouping layers to effectively utilise
MAC for optimisation. Finally, Chapter 5 summarises the key contributions, limitations,
and directions for future work.



Chapter 2

Background

In this chapter, I will introduce the relevant background to understand the work pre-
sented in this thesis. I will begin by introducing two common optimisers used in deep
learning, Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam).
Following this, I will introduce the original formulation of the Method of Auxiliary
Coordinates (MAC) as proposed by Carreira-Perpiñán and Wang (2014), which forms
the basis of my work and discuss its limitations, thus highlighting the importance of my
further research into this method. I will also briefly cover other methods that have been
proposed to speed up training, as well as a primer on speech processing and specifically
the phone classification task used in Chapter 4.

2.1 Optimisation in Deep Learning

In deep learning, optimisation is the process by which we determine the parameters for
a model such that it produces the desired output. This (supervised) training is typically
done on a dataset of known input-output pairs {(x(i),y(i))}. The model with parameters
θθθt first predicts an output ŷ(i) = f(x(i);θθθt), which are then compared to the ground truth
y(i) to compute the error. The errors are gathered across the full dataset to compute
the loss function L(θθθt) =

1
N ∑

N
i=1 L(y(i), ŷ(i)), where N is the number of samples in the

dataset. The goal is to find the parameters θθθ
∗ that minimise this loss, which is typically

done using gradient descent. Since the gradient of a function at a given point indicates
the direction and magnitude of the steepest ascent, the negative gradient points in the
direction of the steepest descent. Thus, we update the parameters iteratively by moving
through the parameter space (a vector space) in the direction of the negative gradient
until the loss converges to a minimum. Formally, the optimisation problem is

θθθ
∗ = argmin

θθθ

1
N

N

∑
i=1

L(y(i), f(x(i); θθθ)). (2.1)

As a simple example, let us consider a one-layer perceptron used to classify a sound
into one of 60 phones (the smallest distinct unit of speech) or silence. Assuming that

4



Chapter 2. Background 5

our sound recording is represented by a 40-dimensional vector x(i) (for more details see
Section 4.1), the classification involves first multiplying the input vector by a weight
matrix W ∈ R61×40 and then passing the result through a softmax function hhh(·) to
obtain the predicted probability vector ŷ = hhh(Wx), where each element represents the
predicted probability of the sound being the respective phone or silence. We can use
cross-entropy to compute the loss as L(W ) =−∑

N
i=1 y(i) log(ŷ(i)), where y(i) is the one-

hot encoded vector of the ground truth phone. Next, the gradient of this loss ∇W L(W )
with respect to the parameters W is computed via backpropagation (Rumelhart et al.,
1986), and the parameters are iteratively updated as

W ←W −η∇W L(W ), (2.2)

where η is the learning rate. The matrix ∇W L(W ) is also known as the Jacobian matrix.

As the model’s number of layers (its ‘depth’) increases, the model’s functional repre-
sentation becomes increasingly nested. For instance, in a two-layer perceptron, the
prediction would be ŷ = hhh(W1 ggg(W0 x)), where ggg is a nonlinearity function, for which
this thesis uses the Rectified Liner Unit (ReLU; Agarap, 2018).

2.1.1 Stochastic Gradient Descent (SGD)

Two drawbacks of regular gradient descent are that it assumes the loss function to be
strongly convex (virtually never the case in practice) and that it requires loss to be
computed across the full dataset for each iteration, which can become very expensive
and slow for large datasets.

Stochastic Gradient Descent (SGD) addresses this issue by computing the gradient
based on a single training example at each iteration. Instead of summing the errors
across the full dataset, SGD randomly selects one data point (x(i),y(i)) and computes
the gradient only from that point:

θθθ← θθθ−η∇θθθL(y(i), ŷ(i)) (2.3)

for model parameters θθθ.

This significantly reduces the computational cost per iteration compared to gradient
descent as described above, where we compute the loss over the full dataset.

However, using a single data point also introduces significant noise into the parameter
updates due to randomness in sampling. This noisy gradient means that SGD does not
follow a direct path towards the minimum like gradient descent, but instead exhibits a
“zigzagging” behavior in the parameter space. While this erratic movement can help
SGD escape shallow local minima, it can also lead to overshooting the global minimum
and failing to converge.

To balance the tradeoff between the fast computations of SGD and the smooth con-
vergence of gradient descent, a common compromise is to use ‘mini-batch’ SGD.
Here, instead of a single data point, a small subset or ‘mini-batch’ of b data points
{x(i),y(i)}b

i=1 is sampled from the dataset at each iteration:
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θθθ← θθθ−η∇θθθ

(
1
b

b

∑
i=1

L(y(i), ŷ(i))

)
(2.4)

Using a mini-batch reduces the noise from the parameter updates compared to true
SGD, while still being more computationally efficient than gradient descent across the
full dataset for large datasets (Bilmes et al., 1997).

2.1.2 Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam), proposed by Kingma and Ba (2015) is meant to
improve upon SGD by utilising a per-parameter learning rate. Each parameter’s learning
rate is adapted over time based on the first and second moments of the gradients (its
mean and variance), although the exact equations are not relevant to this thesis. Adam
has been shown to work well in practice and often converges faster than SGD (Kingma
and Ba, 2015; See Section 4.2).

Both SGD and Adam will serve as important baselines for my work, and I will be
specifically using Adam as part of my implementations.

Both of these optimisers are iterative first-order optimisers, as they use the first partial
derivative of the loss with respect to each parameter, arranged in a Jacobian matrix. In
contrast, second-order optimisers, such as Newton’s method or its approximation, the
Gauss-Newton method (Nocedal & Wright, 2006), use the Hessian matrix, consisting
of the second derivatives with respect to each parameter. While second-order optimisers
usually require fewer iterations to converge than first-order ones, the required Hessian is
also significantly more expensive to compute. I am mentioning these, as they are used
by Carreira-Perpiñán and Wang in their work on the Method of Auxiliary Coordinates,
which I introduce in Section 2.2.

2.2 The Method of Auxiliary Coordinates (MAC)

Following the typical training procedure using SGD or Adam, we compute a full
forward-pass (to compute the loss) but also a full backward-pass (to compute the
updates to each parameter). Not only is this computationally expensive, but it also
doesn’t lend itself well to distributed training, as we need to wait for the full forward
pass to be completed to start the backwards pass, which in turn needs to be completed
for the next iteration to start. While some approaches exist to mitigate this, such as
pipeline parallelism (Harlap et al., 2018; Y. Huang et al., 2019), they have their own
problems including high communication costs and inconsistencies in the model’s state
across the different machines (Nichols et al., 2021; see Section 2.4).

Carreira-Perpiñán and Wang’s proposed ‘Method of Auxiliary Coordinates’ (MAC;
2014) appears to be a promising alternative to the default training procedure, allowing
for a more distributed training procedure. In their experiments, they find a speedup of
approximately 5× over SGD, although I explain in Section 2.3 why these results may
not be entirely accurate for modern use cases of MAC.
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Given a model, defined as a series of layers f0, . . . , fL and their corresponding parame-
ters θθθ0, . . . , θθθL,

ŷ = f (x; θθθ) = fL

(
fL−1

(
. . . f0(xxx; θθθ0) . . . ;θθθL−1

)
; θθθL

)
, (2.5)

we can split up the notation by introducing auxiliary coordinates:

ŷ = f (x; θθθ) = fL(zL), zℓ+1 = fℓ(zℓ; θθθℓ), z0 = x. (2.6)

2.2.1 Mathematical Formulation

Given a dataset {x(i),y(i)}N
i=1, and using the mean squared error as the loss function, we

can define the original objective function from Equation 2.1 as

θθθ
∗ = argmin

θθθ

E1(θθθ)

for E1(θθθ) =
1
N

N

∑
i=1

∥∥∥y(i)− f (x(i); θθθ)
∥∥∥2

.
(2.7)

Using the auxiliary coordinates introduced in Equation 2.6, we can reformulate the
optimisation problem as a constrained optimisation problem, where we optimise over
both the model parameters θθθ and the auxiliary coordinates z.

For a model split into two parts, ŷ = f1(z; θθθ1), z = f0(x; θθθ0), the reformulated Equation
2.7 is

E(θθθ, Z) =
1
N

N

∑
i=1

∥∥∥y(i)− f1(z(i); θθθ1)
∥∥∥2

, s.t. z(i) = f0(x(i); θθθ0). (2.8)

for Z = {z(i)}N
i=1 being the set of all auxiliary coordinates.

For deeper networks with L layers f0, . . . , fL, this trivially extends to

E(θθθ, Z) =
1
N

N

∑
i=1

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2
, s.t. z(i)ℓ+1 = fℓ(z

(i)
ℓ ; θθθℓ), z(i)0 = x(i). (2.9)

The constrained problem stated above can be solved using penalty-based methods
that alternate between updating the parameters θθθ and the auxiliary coordinates Z.
Importantly, each update step involves only a single layer rather than the entire network,
enabling distributed optimisation.

2.2.2 Optimisation using Quadratic Penalties

While the constrained optimisation problem in Equation 2.9, can be solved using
various constrained numerical optimisation methods, Carreira-Perpiñán and Wang
specifically suggest the Quadratic Pentalty approach (Nocedal & Wright, 2006) in their
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paper. This approach works similarly to how the analytical optimisation method of
Lagrange Multipliers (Encyclopaedia of Mathematics, 2002) enforces the constraints by
multiplying each constraint by a Lagrange Multiplier µ and adding them to the original
optimisation problem:

θθθ
∗, Z∗ = argmin

θθθ,Z,µ
EQ(θθθ, Z; µ)

for EQ(θθθ, Z; µ) =
1

2N

N

∑
i=1

∥∥∥y(i)− f (z(i)L ; θθθ)
∥∥∥2

+
µ

2N

L−1

∑
ℓ=0

N

∑
i=1

∥∥∥z(i)ℓ+1− fℓ(z
(i)
ℓ ; θθθℓ)

∥∥∥2

(2.10)

The first term is the original objective function from Equation 2.7, while the second
term penalizes violations of the constraints, weighted by µ. As µ→ ∞, minimizing
EQ forces the constraints to be satisfied exactly, recovering the original constrained
problem.

2.2.3 Alternating Optimisation Steps

To minimise the quadratic penalty function (2.10), we alternatingly optimise over the
parameters θθθ and auxiliary coordinates Z 1 in what Carreira-Perpiñán and Wang call
the W-step and Z-step, respectively:

W-step: Given the auxiliary coordinates Z, each layer’s parameters θθθℓ are optimised
(trained) separately while keeping the other layers and the auxiliary coordinates fixed:

θθθℓ← argmin
θθθℓ

EQ(θθθ, Z; µ). (2.11)

Z-step: Since all the datapoints (x(i), y(i)) are independent, their corresponding aux-
iliary coordinates z(i)1 , . . . , z(i)L (jointly denoted as z(i)) are also independent from any
other z( j) for j ∈ {1, . . . , N}\{i}. Hence, the set of auxiliary coordinates z(i) of each
datapoint can be updated separately while keeping the other zs and model parameters
fixed:

z(i)1 , . . . , z(i)L ← argmin
z(i)1 , ...,z(i)L

EQ(θθθ, Z; µ). (2.12)

1This alternating optimisation of θ and Z resembles the Method of Coordinate Descent, where the
parameters are updated one at a time while keeping the others fixed, which is sometimes used when ‘a
calculation of the derivatives involves a large amount of computation’ (Encyclopaedia of Mathematics,
2002).
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It is important to note that while the auxiliary coordinates are independent across
datapoints, the coordinates z(i)1 , . . . , z(i)L originating from the same input x(i) are still
coupled.

More details on the W and Z-Step update rules are provided in Chapter 3, as well as
a thorough discussion of how the zs are coupled across layers, and how they can be
decoupled effectively.

2.3 Limitations of Carreira-Perpiñán and Wang’s Work

While Carreira-Perpiñán and Wang’s work appears promising, with their experiments
showing a speedup of approximately 5× over SGD, it has some notable limitations.
Some of these can be attributed to the rapid advancement of deep learning since their
first publication on this method in 2012, while other limitations are inherent to their
specific approaches. In the following, I will discuss some of the key limitations.
More meticulous discussion on the specific limitations of their Z-Step formulation and
implementation are provided in Section 3.1, where I will also address these limitations
through my own work.

2.3.1 Limitations due to Age

Carreira-Perpiñán and Wang first published a preprint of their work in 2012 and later
published the journal article in 2014. Since then, various new network architectures,
optimisers, training paradigms, as well as computer architectures have been developed
to aid the training of more complex models on larger datasets.

Network Architecture The experiments by Carreira-Perpiñán and Wang focus primar-
ily on Radial Basis Function (RBF) networks and feedforward neural networks with
sigmoid activations. However, in the years since their publication, other architectures
have become popular. In particular, Transformer networks (Vaswani et al., 2017) have
seen widespread adoption in natural language processing tasks for handling text and
speech data, and have even been adapted for vision tasks (Chai et al., 2021; Dosovitskiy
et al., 2021; Torfi et al., 2020). Although the Method of Auxiliary Coordinates can likely
be adapted to these architectures, it is not clear how well it would perform, and how
fast it would converge, given the increased complexity of these architectures. Specifi-
cally, the use of architectural features such as skip connections and layer normalisation,
or dropout regularisation (Ba et al., 2016; He et al., 2016; Hinton et al., 2012), in
Transformers could impact the suitability of the Method of Auxiliary Coordinates.

Processors The authors report speedups of approximately 5x over stochastic gradient
descent (SGD). However, these comparisons were performed using a 16-core CPU,
whereas GPUs have since become the standard for training deep neural networks. Their
parallel architecture and focus on single instruction, multiple data (SIMD) operations
make GPUs well-suited for the expensive matrix multiplications common in the forward
and backward passes of neural networks. Similar to how my MInf 1 project showed
that different network architectures (CNNs vs Transformers) are better suited for CPUs
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and GPUs, respectively, the Method of Auxiliary Coordinates may benefit more or less
than optimisers like SGD or Adam from the parallelism of GPUs.

2.3.2 Limitations in their Approaches

Not all limitations of Carreira-Perpiñán and Wang’s work can be attributed to the age of
their work. Some limitations are inherent to their specific approaches and experiments.

Optimisation Algorithms The experiments in their work use the second-order Gauss-
Newton method to solve both the W and Z-steps. While this method may be suitable
for small networks, the computational cost of computing the Hessian for each layer in
the W-Step and across all datapoints in the Z-Step may become prohibitive for large
models and large datasets.

Dataset Size While the authors’ use of comparatively small datasets is justified for
fast implementation, iteration and verification of their method, their used USPS dataset
(Hull, 1994) with 5 thousand 16× 16 images and the COIL-20 dataset (Nene et al.,
1996) with 1368 images (although in a higher resolution), were already small at the
time of their publication. For instance, the MNIST (LeCun et al., 1998) dataset with 60
thousand 28×28 images, which is these days considered more of a ‘toy’ dataset, was
already published for 14 years at the time of their publication.

However, even MNIST is very small and easy to train (a 2-layer multi-layer perceptron
with 200k parameters can achieve a cross-entropy loss of near 0 within seconds on a
Laptop CPU), compared to more common datasets such as ImageNet (Deng et al., 2009)
with over 3 million images for classification, or speech recognition datasets such as
the 80-hour Wall Street Journal (Paul & Baker, 1992), the up to 960-hour LibriSpeech
(Panayotov et al., 2015) or the 60k-hour Libri-Light dataset (Kahn et al., 2020) common
for self-supervised training.

MAC’s scalability to larger datasets requires further evaluation.

Applications Since Carreira-Perpiñán and Wang motivate their work as being an
extension of an autoencoding technique which they first published a few years prior
(Carreira-Perpiñán & Lu, 2008), the experiments for MAC are also focused on au-
toencoding tasks for images. Specifically, they also restrict themselves to using the
reconstruction mean squared error (MSE) as the objective function. Investigating the ef-
fectiveness of MAC for more diverse applications as well as other losses would provide
insight into its more general applicability.

In summary, while Carreira-Perpiñán and Wang’s work on the Method of Auxiliary
Coordinates (MAC) presents a promising approach for distributed optimisation of
deep neural networks, it has several limitations. Some of these limitations arise from
the rapid advancements in deep learning since the original publication, such as the
development of new architectures, processors, and optimisation algorithms. Other
limitations are inherent to the specific approaches used in their work, such as their
focus on autoencoding tasks for two comparatively small image datasets. Although
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their follow-up publication (Carreira-Perpiñán & Alizadeh, 2019) does use larger
datasets, all other mentioned limitations including in particular the use of CPUs, despite
GPUs already being commonplace, remain in place. Addressing these limitations
and extending MAC to modern deep learning settings could help provide insight into
its suitability and possibly even help establish it as a promising framework for the
distributed training of deep neural networks.

2.4 Related work on accelerating training

Besides MAC, other methods for accelerating the training of deep neural networks have
been proposed. In this section, I introduce three different types of parallelism that have
been and are currently used to distribute training, and also briefly mention two other
approaches for speeding up model training that do not rely on parallelism.

Data Parallelism In data parallelism, each machine possesses an identical copy of the
full model and a subset of the data. Each machine does a full forward and backward
pass for its data to compute the gradients. When all machines are done, all of the
gradients are accumulated, the model parameters are updated centrally and the model
is sent to all machines. Ignoring communication costs, this leads to an approximately
linear speedup with the number of GPUs (Nichols et al., 2021), however, it assumes
that the entire model can fit on each GPU.

Model Parallelism When a model is too large to fit on a single GPU, we can instead
use model parallelism, where each machine possesses only a subset of the model layers.
For a single forward pass, the first machine with the first group of layers passes the
input through its layers. The output is sent to the next machine with the next group
of layers, which passes the last machine’s output through its layers and sends its own
output to the next machine, etc. until the data has passed through the whole model.
The gradients are passed through the machines in reverse. However, as a model update
requires a forward and backward pass through all layers, the machines are idle for most
of the time. No speedup over regular SGD is achieved.

Pipeline Parallelism This can be seen as a combination of model and data parallelism.
As with model parallelism, different machines handle different layers, but instead of
waiting for the first batch’s full gradient to be computed, the machines pass multiple
batches forward before the first batch is done. Examples of this were proposed by
Y. Huang et al. (2019) and Harlap et al. (2018). Generally, this converges faster than
simple model parallelism, but slower than data parallelism (Harlap et al., 2018; Nichols
et al., 2021).

Two other approaches that claim to accelerate training while not relying on parallelism
were proposed by G. Huang et al. (2016) and Larsson et al. (2017). These approaches
both rely on shortening the network during training, either by stochastically skipping
layers or by randomly replacing a pair of layers with a single layer during training,
respectively.
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2.5 Speech Recognition and Phone Classification

In continuation of my MInf 1 project (Martin, 2023), this thesis trains deep neural
networks for speech processing. Specifically, the task of phone classification is chosen.

In speech recognition, audio signals are digitally represented as waveforms, capturing
air pressure fluctuations over time. The sample rate, often set at 16kHz for speech data,
determines the number of discrete samples recorded per second.

Another common representation is the log-mel-spectrogram. It is derived from the
spectrogram, which visualises the frequencies of a waveform as time progresses, by
applying a Discrete Fourier Transform on sliding windows of a certain length and stride.
The mel-scale, proposed by Stevens et al. (1937), is then applied to the spectrogram to
better match human auditory perception, which is more sensitive to lower frequencies.
This is achieved by averaging overlapping groups of frequencies, with smaller groups in
the lower range and larger groups in the higher range, resulting in the mel-spectrogram.
Finally, the amplitudes (y-axis) of the Mel-spectrogram are logarithmically scaled to
obtain the log-mel-spectrogram.

The models in this thesis take log-mel-spectrograms with a 25 ms window, 10 ms stride
and 40 mel-filters as input and are trained to predict a phone, the smallest identifiable
unit of speech, for each time frame. This task forms a sub-problem of automatic speech
recognition, where the goal is to transcribe spoken language into text.

Figure 2.1: A waveform is converted into a spectrogram, displaying amplitude across
frequencies over time. The spectrogram is then transformed into a mel-spectrogram
by averaging frequencies according to the mel-scale. Amplitude is represented by
pixel darkness in both the spectrogram and mel-spectrogram. The arrows indicate the
sequence of transformations from the original waveform to the final mel-spectrogram
representation. Diagram taken from Martin (2023), orginally adapted from de Benito
et al. (2019).



Chapter 3

Extensions to MAC

This chapter discusses various extensions to the Method of Auxiliary Coordinates. I
will begin by providing a short overview of the MAC update equations for the W- and,
importantly, the Z-Step. As the Z-Step is MAC’s main innovation over other training
methods such as those mentioned in the background (Section 2.4), it will also be the
main focus of the following two sections. In particular, I will discuss how the Z update
rule is coupled across layers and what this means for distributing the training across
different machines. Following this, I’ll discuss two techniques of how to partially and
fully decouple the Z-Step update equations to enable better distributivity. I will follow
this up by proposing a series of smaller extensions to MAC, which allow the method
to be applied to more modern architectures and tasks other than autoencoding. These
extensions are proposed in this chapter and will be evaluated in the Experiments chapter
(Chapter 4). This chapter will conclude by introducing a set of equations to describe the
theoretical speedup of distributed, decoupled MAC when compared to a typical training
procedure using SGD or Adam.

3.1 On the W and Z-Steps

In continuation of the previous chapter’s description of MAC, this section provides a
more detailed look at the updated equations for the W- and Z-Steps, and in particular,
motivates the need for decoupling the Z-Step.

3.1.1 W-Step

We recall from the previous chapter that the W-Step involves updating each layer’s
parameters θθθℓ separately while keeping the other layers and the auxiliary coordinates
fixed. This is described generally by the update rule in Equation 2.11. Assuming that
we train a model on a dataset {x(i), y(i)}N

i=1 using a mean squared error (MSE) loss, the

13
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W-Step update rule for layer ℓ is given by

θθθℓ← argmin
θθθℓ

EQ(θθθ, Z; µ)

= argmin
θθθℓ

1
2N

N

∑
i=1

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2

+
µ

2N

L−1

∑
ℓ′=0

N

∑
i=1

∥∥∥z(i)ℓ′+1− fℓ(z
(i)
ℓ′ ; θθθℓ′)

∥∥∥2
.

(3.1)

To simplify the equation, we can drop all terms that do not depend on θθθℓ:

θθθℓ←

argminθθθℓ

1
2N ∑

N
i=1

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2
if ℓ= L,

argminθθθℓ

µ
2N ∑

N
i=1

∥∥∥z(i)ℓ+1− fℓ(z
(i)
ℓ ; θθθℓ)

∥∥∥2
if 0≤ ℓ < L.

(3.2)

for z(i)0 = x(i).

Since the constant factors 1
2 and µ

2 do not affect the minimisation, we can drop them as
well, leaving us with the simplified W-Step update rule:

θθθℓ←

argminθθθℓ

1
N ∑

N
i=1

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2
if ℓ= L,

argminθθθℓ

1
N ∑

N
i=1

∥∥∥z(i)ℓ+1− fℓ(z
(i)
ℓ ; θθθℓ)

∥∥∥2
if 0≤ ℓ < L.

(3.3)

Thus, given that all zs are known and fixed, We have reduced the W-Step update rule for
layer ℓ from its general form in terms of the quadratic penalty (Eq. 2.10) to training the
layer by minimising the MSE loss between its output and the next layer’s input across
all datapoints. This is a standard minimisation problem that can be approached using
various gradient-based optimisation algorithms. For example, Carreira-Perpiñán and
Wang use the second-order Gauss-Newton method in their experiments, although I will
use the first-order Adam optimiser in my experiments (see Section 4.1).

3.1.2 A coupled Z-Step

Akin to the W-Step, we can expand the Z-Step’s update rule from the general form
in Equation 2.12 to the specific form for each datapoint’s auxiliary coordinates z(i) =
{z(i)1 , . . . , z(i)L }:

z(i)1 , . . . , z(i)L ← argmin
z(i)1 , ...,z(i)L

EQ(θθθ, Z; µ)

= argmin
z(i)1 , ...,z(i)L

1
2N

N

∑
j=1

∥∥∥y( j)− fL(z
( j)
L ; θθθL)

∥∥∥2

+
µ

2N

L

∑
ℓ=1

N

∑
j=1

∥∥∥z( j)
ℓ − fℓ−1(z

( j)
ℓ−1; θθθℓ−1)

∥∥∥2
.

(3.4)
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Note the change in the third row, where the sum over ℓ starts at 1 instead of 0, to reflect
the fact that z(i)0 = x(i) is fixed.

Simplifying this equation by dropping all terms that do not depend on z(i) yields

z(i)1 , . . . , z(i)L ← argmin
z(i)1 , ...,z(i)L

1
2

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2

+
µ
2

L

∑
ℓ=1

∥∥∥z(i)ℓ − fℓ−1(z
(i)
ℓ−1; θθθℓ−1)

∥∥∥2
.

(3.5)

While this equation is somewhat similar to the expanded W-Step update rule in (3.1),
the W-Step’s update rule only optimises over a single variable, while the Z-Step must
optimise over all z(i)ℓ jointly. This is necessary, as the z(i)ℓ s are coupled across layers,

meaning that minimising one term by changing the value of z(i)ℓ will affect the value of

another term which also depends on the same z(i)ℓ . Hence, to optimise z(i)L , we must also

optimise z(i)L−1. However, to optimise z(i)L−1, we must also optimise z(i)L−2, etc., until we

reach z(i)1 . This not only complicates the optimisation problem but also complicates the
distributivity of the Z-Step.

3.1.3 Issues with a coupled Z-Step

Given the coupling requirement, the only ways of parallelising the Z-Step are by either
distributing the zs by layer, synchronising the coordinates between each Z-Step iteration,
or by distributing the Z-Step by datapoint, such that each machine is responsible for
all auxiliary coordinates of a subset of the datapoints. The former approach has a huge
communication overhead, while the latter approach is inconsistent with the W-Step,
which is distributed by layer. With this inconsistency, we would have to communicate
the updated θs to all machines after each W-Step iteration, and then communicate the
updated zs to all machines after each Z-Step iteration. This communication overhead
would result in a significant bottleneck in MAC’s distributivity.

Although Carreira-Perpiñán and Wang will have likely been aware of the complication
of having the Z-Step be coupled across layers, they circumvent this by only ‘running
the Z-step with 1 Gauss-Newton iteration’ (Carreira-Perpiñán & Wang, 2012). In this
special case, the update of the coupled z(i)s is equivalent to the update of the partially
coupled variant (see Section 3.2.1) which can be distributed more easily. However,
as we increase the number of iterations, the coupling across layers becomes a more
significant issue. To avoid using the expensive Gauss-Newton method (see the following
subsection) in favour of a first-order optimiser, we must decouple the Z-Step. This will
be the focus of the subsequent sections.

3.1.4 Cost of the Gauss-Newton method

As mentioned previously, while the Gauss-Newton method used by Carreira-Perpiñán
and Wang requires very few iterations (the authors use 1 iteration), each iteration is very
expensive to compute.



Chapter 3. Extensions to MAC 16

Given a concatenated auxiliary coordinate vector z =
[
z(i)1 · · · z(i)L

]⊤
∈ Rn×1 for

datapoint i, where L is the number of layers, the Gauss-Newton method’s update rule is
given by

z← z− (J⊤J)−1J r, (3.6)

where r ∈ R1×1 is the sum of residuals in Equation 3.5 and J ∈ Rn×1 is the Jacobian of
r with respect to z, s.t. J j =

∂r
∂z j

for element j ∈ {1, . . . , n}.

Assuming that the residuals and Jacobian are given, and using basic schoolbook ma-
trix multiplication (see Appendix A) to compute the update, we get the following
complexities:

• Multiplying J⊤J requires O(n2) operations.

• Inverting J⊤J has the same time complexity as J2, thus requiring O(n3) operations
(Strassen, 1969).

• Multiplying ((J⊤J)−1)J requires O(n2) operations.

• Updating z is an element-wise subtraction, requiring O(n) operations.

Hence, we have a total computational complexity of O(n3) for each Gauss-Newton
iteration, assuming that the residuals and Jacobian are already known.

Comparing this to the cost of a first-order optimiser such as SGD:

z← z−ηJ, (3.7)

where η is the learning rate, we see that the cost of a single iteration is O(n) and
thereby significantly lower than the Gauss-Newton method. This is still true for cheaper
matrix multiplication algorithms than the schoolbook method used above for simplicity
(Williams et al., 2023).

Given the high cost of the Gauss-Newton method, it is clear that we should aim to
decouple the Z-Step and use a first-order optimiser instead.

3.2 Decoupling the Z-Step

As discussed in the previous section, the coupling of the auxiliary coordinates z(i)1 , . . . ,z(i)L
across layers in the Z-Step update rule (Equation 3.5) poses challenges for distribut-
ing the computation. The two main approaches for parallelising the coupled Z-Step
– distributing by layer or by datapoint – both have significant drawbacks in terms of
communication overhead and inconsistency with the layer-wise distribution of the
W-Step.

To enable more efficient distributed optimization, it is desirable to decouple the Z-
Step update rule such that the auxiliary coordinates for each layer can be updated
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independently. This would allow the Z-Step to be parallelized across layers, consistent
with the distribution scheme of the W-Step, thereby reducing the communication
overhead.

In the following subsections, I will present two techniques for decoupling the Z-Step:
partial decoupling and full decoupling. The partially decoupled variant approximates
the coupled variant described in Section 3.1.2 by assuming independence between
the auxiliary coordinates of different layers and optimising each z(i)ℓ separately while
keeping the other coordinates fixed. This variant will also be referred to as ‘2-term
decoupling’, as the optimisation equation can be reduced to two terms. I further show
that performing one iteration of the coupled Z-Step update rule is equivalent to one
iteration of the partially decoupled rule. The fully decoupled variant, called the ‘1-
term’ update rule, further simplifies the update equations to reduce the amount of data
transferred between machines after each W and Z-Step.

By decoupling the Z-Step, I aim to develop a more computationally efficient and easily
distributable version of the Method of Auxiliary Coordinates. The benefits and potential
drawbacks of these decoupled variants will be discussed in detail, providing a foundation
for the experimental evaluation in Chapter 4.

3.2.1 Partially decoupled training

Arguably the simplest way to decouple the Z-Step is to simply assume that the auxiliary
coordinates z(i)1 , . . . ,z(i)L are independent across layers. Under this assumption, we
can minimise the Z-Step update rule from Equation 3.5 separately for each z(i)ℓ while
keeping the other coordinates fixed:

z(i)ℓ ← argmin
z(i)ℓ

1
2

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2
+

µ
2

L

∑
ℓ′=1

∥∥∥z(i)ℓ′ − fℓ′−1(z
(i)
ℓ′−1; θθθℓ′−1)

∥∥∥2
. (3.8)

By removing the constant terms that do not depend on z(i)ℓ and simplifying, we obtain
the partially decoupled Z-Step update rule:

z(i)ℓ ←


argmin

z(i)ℓ
1
2

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2
+ µ

2

∥∥∥z(i)L − fL−1(z
(i)
L−1; θθθL−1)

∥∥∥2
if ℓ= L,

argmin
z(i)ℓ

µ
2

∥∥∥z(i)ℓ+1− fℓ(z
(i)
ℓ ; θθθℓ)

∥∥∥2
+ µ

2

∥∥∥z(i)ℓ − fℓ−1(z
(i)
ℓ−1; θθθℓ−1)

∥∥∥2
if 0 < ℓ < L.

(3.9)
where z(i)0 = x(i).

Interestingly, performing one iteration of the coupled Z-Step update rule (Equation 3.5)
is equivalent to performing one iteration of the partially decoupled update rule. This can
be shown by comparing the partial derivative of the coupled update rule with the partial
derivative of the partially decoupled update rule for each layer ℓ in both equations.
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Coupled (Eq. 3.5):

∂EQ

∂z(i)ℓ
=

∂

∂z(i)ℓ

(
1
2

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2
+

µ
2

L

∑
ℓ′=1

∥∥∥z(i)ℓ′ − fℓ′−1(z
(i)
ℓ′−1; θθθℓ′−1)

∥∥∥2
)

=
∂

∂z(i)ℓ

(
µ
2

∥∥∥z(i)ℓ+1− fℓ(z
(i)
ℓ ; θθθℓ)

∥∥∥2
+

µ
2

∥∥∥z(i)ℓ − fℓ−1(z
(i)
ℓ−1; θθθℓ−1)

∥∥∥2
)

(3.10)

Partially decoupled (Eq. 3.9):

∂

∂z(i)ℓ

(
µ
2

∥∥∥z(i)ℓ+1− fℓ(z
(i)
ℓ ; θθθℓ)

∥∥∥2
+

µ
2

∥∥∥z(i)ℓ − fℓ−1(z
(i)
ℓ−1; θθθℓ−1)

∥∥∥2
)

(3.11)

As these equations are sufficient to show the equivalence of the two partial derivatives, I
will not provide the full derivations here. However, the interested reader is encouraged
to view them in Appendix B.

Given that the partial derivatives of the coupled and partially decoupled update rules are
shown to be equal, their respective Jacobians are also equal. Hence, assuming that all
variables zℓ, zℓ−1, θθθℓ and θθθℓ−1 are known and the same for both Z-Step variants (which
they are), any update using the Gauss-Newton, SGD, Adam or any other optimiser that
is solely dependent on the Jacobian will be equivalent for both the coupled and partially
decoupled Z-Step update rules. This equivalence is likely what Carreira-Perpiñán and
Wang rely on to distribute the Z-Step in their experiments.

While the coupled Z-Step updates all zs in each iteration and uses the updated coordi-
nates for the subsequent iteration, the 2-term Z-Step updates each zℓ separately from
zℓ−1, thereby using the old value of zℓ−1 for each iteration of zℓ. Thus, as the number of
iterations increases, the 2-term rule becomes an approximation for the coupled update
rule and the equivalence between the two update rules becomes less accurate. However,
as the number of iterations is typically small, the approximation is likely to be sufficient
for most practical purposes and its inaccuracies are outweighed by the benefits of
distributing the Z-Step by layer.

Now that we can distribute both, the W- and 2-term Z-Step by layer, the computation
flow across different machines, where each machine is responsible for a single layer, is
illustrated in Figure 3.1. The procedure is as follows:

1. Machine 0 initialises the model parameters and the auxiliary coordinates by
computing a forward pass through all layers for each datapoint (x(i),y(i)).

2. The relevant initial parameters and coordinates are sent to each machine. Machine
ℓ (for ℓ < L) receives θθθℓ, zℓ and zℓ+1. Machine L receives θθθL, zL and y.

3. Each machine trains its respective layer ℓ using the W-Step update rule from
Equation 3.3 for a predefined number of iterations.

4. After the W-Step, each machine communicates the updated θθθℓ as well as its
coordinates zℓ to the next machine (e.g. machine ℓ sends (θθθℓ, zℓ) to machine
ℓ+1). As machine L has no successor, it does not send any data.
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Figure 3.1: Computation and communication flow of partially decoupled MAC. Each
square indicates a machine performing a computation. The label at the centre of the
square describes which values are being updated by the computation. The arrows
indicate the transfer of data from one machine to another. Each arrow’s label indicates
what data is being sent. Data transfers occur after each step. Each machine is assumed
to have persistent storage between each computation. For example, machine 0 first
initialises the model parameters and auxiliary coordinates. Machine 0 then sends the
relevant parameters and coordinates to each other machine and proceeds to optimise
θ0 during the W-Step. Next, θ0 is sent to machine 1. While the other machines compute
the Z-Step, machine 0 remains idle. Etc.

5. Each machine optimises its respective auxiliary coordinates zℓ using the 2-term
Z-Step update rule from Equation 3.9 for a predefined number of iterations. Since
z0 = x is fixed, machine 0 does not perform a Z-Step. Note that because the
machines only communicate before the Z-Step and not during it, machine ℓ can
only use the old values of zℓ−1 and zℓ+1 from before the Z-Step.

6. After the Z-Step, each machine communicates the updated auxiliary coordinates
zℓ to the preceding machine (e.g. machine ℓ sends zℓ to machine ℓ− 1). As
machine 0 has not performed a Z-Step, it does not send any data.

7. The process is repeated from step 3 for a predefined number of epochs.

This communication diagram shows that the 2-term Z-Step can be distributed by layer
in a similar manner to the W-Step. The communication overhead is limited to the
transfer of the updated parameters and coordinates between machines after each W
and Z-Step. This is a significant improvement over the coupled Z-Step, which would
require synchronising all auxiliary coordinates between machines after each Z-Step
iteration, which can quickly become very expensive, especially with large datasets. The
2-term Z-Step is therefore more easily distributable and can be parallelised across layers,
making it a more efficient and scalable training method for deep neural networks.

While the partially decoupled variant requires less communication than the coupled
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Z-Step, there may be room for further reduction in communication overhead. This leads
us to the fully decoupled variant, which will be discussed in the next subsection.

3.2.2 Fully decoupled training

While the partially decoupled 2-term Z-Step update rule reduces the communication
overhead compared to the coupled variant, it may be possible to further decrease the
amount of data transferred between machines. This leads us to propose a fully decoupled
1-term Z-Step update rule.

The key idea is to further simplify the 2-term update rule in Equation 3.9 by removing
one of the two terms for each layer ℓ. Since our intent is to minimise the MSE loss
∥y− fL(zL;θθθL)∥2 under the constraint that zℓ+1 = fℓ(zℓ;θθθℓ), we must keep y as part of
our update rule. If we then disregard the second term from the 2-term update rule for
each zℓ, we get

z(i)ℓ ←


argmin

z(i)ℓ
1
2

∥∥∥y(i)− fL(z
(i)
L ; θθθL)

∥∥∥2
if ℓ= L,

argmin
z(i)ℓ

µ
2

∥∥∥z(i)ℓ+1− fℓ(z
(i)
ℓ ; θθθℓ)

∥∥∥2
if 0 < ℓ < L.

(3.12)

as the fully decoupled Z-Step update rule. Each zℓ is now optimised to a value that,
when it is input into the layer fℓ, the output is as close to the target as possible. zL is
optimised such that the output fL(zL; θθθL) is as close to the ground truth as possible.
Next, zL−1 is optimised such that the output of fL−1(zL−1; θθθL−1) is as close to zL as
possible, etc. until z1.

By further decoupling the update rule and reducing it to a single term, the optimisation
problem for each zℓ is no longer dependent on zℓ−1 or θθθℓ−1. Hence, the machines don’t
need to request zℓ−1 or θθθℓ−1 from the previous machine before the Z-Step, thereby more
than halving the communication required between machines. Figure 3.2 illustrates the
updated computations across machines for the fully decoupled Z-Step. Note that the
auxiliary coordinates are only communicated once from one machine to another after
each epoch. The model weights are never communicated.

Drawbacks While this 1-term update rule seems very effective in terms of reduc-
ing communication overhead, it also has some potential drawbacks that need to be
considered:

1. Since we are only optimising each zℓ to minimise the MSE loss between the
output of layer fℓ and either the next layer’s input or the target, we may end up
‘over-optimising’ a coordinate. For instance, if we minimise ∥y− fL(zL;θθθL)∥2 for
zL, we could end up choosing values for zL that the L-th layer can use to almost
perfectly predict y, but now the preceding layers need to be trained to predict
zL. If we then optimise ∥zL− fL−1(zL−1;θθθL−1)∥2 for zL−1, we will end up in a
similar situation where layers L−1 and L can together almost perfectly transform
zL−1 into y, but now the preceding layers need to be trained to predict zL−1, etc.
In the end, we have effectively reduced the full network to only the bottom layer.



Chapter 3. Extensions to MAC 21

Initialise,
FW Pass

Epoch 2Epoch 1

W-Step Z-Step W-Step Z-Step

Machine 0

Machine 1

Machine 2

Machine 3

Figure 3.2: Computation and communication flow of fully decoupled MAC. The distribu-
tion of computations across machines through time is identical to partially decoupled
MAC in Figure 3.1. The data transfers between machines are reduced in fully decoupled
MAC when compared to Figure 3.1.

To avoid this, we must carefully choose the Z-Step learning rate and number of
iterations to only slightly update zℓ during each epoch.

2. Although the 1-term rule requires less communication, the time spent on compu-
tation likely far outweighs the time spent on communication, which, despite the
reduced number of terms, is not significantly faster than the 2-term rule. This is
because in the 2-term case, the output of the previous layer fℓ−1(zℓ−1;θθθℓ−1) can
be precomputed and reused for each iteration of the Z-Step.

In summary, the proposed fully decoupled 1-term Z-Step update rule reduces the com-
munication overhead of the partially decoupled 2-term rule even further by simplifying
the update equations. However, this may also cause it to be more sensitive to the
hyperparameter choice. Further, as it is only an approximation of an approximation of
the original coupled Z-Step, it may even lead to reduced performance of the trained
model. Additionally, the 1-term approach provides little to no computational speedup
over the 2-term rule. The trade-offs between the 1-term and 2-term variants will be
investigated experimentally in Chapter 4.

3.3 Further extensions

In addition to the decoupled Z-Step variants proposed in the previous sections, several
other extensions can be made to the Method of Auxiliary Coordinates to improve its
applicability outside of the image autoencoding use case presented by Carreira-Perpiñán
and Wang (2014). In particular, this section will cover how we can use MAC with
custom non-MSE loss functions, modern sequential network architectures, and dropout
regularisation.
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3.3.1 Custom loss functions

The update rules introduced by Carreira-Perpiñán and Wang (2014), which were ex-
tended and decoupled in this chapter assume a mean squared error (MSE) loss function.
However, just like other training techniques, the Method of Auxiliary Coordinates can
be extended to work with any differentiable loss function L(y, f (x;θθθ)). This is useful
for tasks where the MSE loss is not appropriate, such as classification tasks, where
the cross-entropy loss is commonly used, speech recognition using a Connectionist
Temporal Classification loss, or self-supervised learning tasks using autoregressive or
contrastive losses (Graves et al., 2006; van den Oord et al., 2018; Yang et al., 2022).
The W-Step update rule for the output layer (Eq. 3.3) simply becomes:

θθθL← argmin
θθθL

1
N

N

∑
i=1

L(y(i), fL(z
(i)
L ;θθθL)) (3.13)

Similarly, the output layer’s Z-Step update rules (Eq. 3.5, 3.9 and 3.12) become

Coupled: z(i)L ← argmin
z(i)1 , ...,z(i)L

1
2

L(y(i), fL(z
(i)
L ;θθθL))+

µ
2

L

∑
ℓ=1

∥∥∥z(i)ℓ − fℓ−1(z
(i)
ℓ−1; θθθℓ−1)

∥∥∥2

(3.14)

Partially decoupled: z(i)L ← argmin
z(i)L

1
2

L(y(i), fL(z
(i)
L ;θθθL))+

µ
2

∥∥∥z(i)L − fL−1(z
(i)
L−1; θθθL−1)

∥∥∥2

(3.15)

Fully decoupled: z(i)L ← argmin
z(i)L

1
2

L(y(i), fL(z
(i)
L ;θθθL)) (3.16)

The update rules for the hidden layers remain unchanged. This extension allows MAC
to be applied to a wider range of tasks.

3.3.2 Arbitrary network architectures

The architectures used by Carreira-Perpiñán and Wang in their 2014 publication on
MAC and their 2019 follow-up are a sigmoidal autoencoder, as well as autoencoders
based on Radial basis functions (RBF) and a linear Support vector machines (SVM).
While they were sufficient for the authors to demonstrate the effectiveness of MAC, they
are not commonly used for modern applications or even representative of today’s deep
learning architectures. However, MAC can handle more complex, modern architectures
as well.

Since all the equations have thus far used the generic notation fℓ( · ; θθθℓ) to denote the
ℓ-th layer, accepting an input of a pre-specified dimension and returning an output of the
same or different dimension. Thus, instead of following Carreira-Perpiñán and Wang,
we can define the function to be any self-contained network layer, such as a feedforward
layer (linearity + non-linearity), a Transformer block (Vaswani et al., 2017), an LSTM
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layer, or any other current or future function that accepts an input and provides an
output. This allows us to incorporate architectural features such as skip connections or
layer normalisation within a layer (Ba et al., 2016; He et al., 2016).

3.3.3 Dropout

Although we can theoretically use any layer type as the fℓ function, one restriction is
that the chosen layer should be deterministic (i.e. given the same input with the same
parameters, always produce the same output). While stochasticity can for instance be
useful in the case of dropout (Hinton et al., 2012), it would either average out over
multiple iterations of the Z-Step or, if the Z-Step is only run for very few iterations
(as I have shown to be desirable in Chapter 4), the stochasticity would throw off the
gradients in the Z update step.

Therefore, to be able to take advantage of the benefits of dropout while still using MAC,
we can simply apply dropout only during the W-Step. Thus, the forward pass through
the network during the Z-Step is deterministic, while the W-Step can use dropout to
regularise the model.

3.4 Theoretical speedup

In the previous sections, I proposed several extensions to the Method of Auxiliary
Coordinates to enable more efficient distributed training of deep neural networks.
Specifically, I introduced partially and fully decoupled variants of the Z-Step update
rule to reduce the communication overhead between machines and allow the Z-Step to
be parallelized across layers, consistent with the distribution scheme of the W-Step.

These extensions aim to improve the computational efficiency and scalability of MAC.
Hence, in this section, I will introduce a set of equations to describe the theoretical
speedup of distributed, decoupled MAC when compared to batched stochastic gradient
descent or Adam. In particular, I will highlight under which circumstances a distributed
MAC can be expected to provide a speedup.

3.4.1 Training time of SGD

Let us begin by deconstructing the time TSGD that SGD (or by extension Adam) take to
achieve the desired loss on the given training set:

TSGD = ESGD · tSGD

= ESGD ·
(

tF + tB + tother

BSGD

)
≈ ESGD ·

(
tF + tB
BSGD

) (3.17)

where ESGD is the number of epochs required to reach the desired loss, tSGD is the
time taken per epoch, and tF and tB are the times taken for a single forward pass and
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backward pass through the entire network for all datapoints with batch size 1. tother
is a placeholder for the time taken by other computations (e.g. the paramter update),
although this tends to take significantly less time than the forward and backward passes,
I will disregard tother for this analysis. To account for batching, I introduce BSGD as the
batch size.

The times taken for a single forward pass tF and backward pass tB are given by

tF =
L

∑
ℓ=0

tF,ℓ, tB =
L

∑
ℓ=0

tB,ℓ, (3.18)

where tF,ℓ and tB,ℓ are the times taken for the forward and backward passes through the
ℓ-th layer, respectively.

3.4.2 Training time of MAC

The training time TMAC of MAC (when run synchronously on one machine) can first
be similarly deconstructed into the time taken for one epoch tMAC and the number of
epochs EMAC required to reach the desired loss, and then further into the time taken for
the W and the Z-Step:

TMAC = EMAC · tMAC

= EMAC · (NW · tW +NZ · tW + tother)

≈ EMAC · (NW · tW +NZ · tW)

= EMAC ·

(
L

∑
ℓ=0

(NW,ℓ · tW,ℓ)+
L

∑
ℓ=0

(NZ,ℓ · tZ,ℓ)

) (3.19)

where NW and NZ are the number of iterations of the W and Z-Step, and tW and tZ are
the times taken for one iteration of the respective steps across the full network and
dataset with batch size 1. NW,ℓ, NZ,ℓ, tW,ℓ and tZ,ℓ are the iterations and times taken for
each step on an individual layer ℓ. As with SGD, I disregard tother for this analysis.

If we now take advantage of the distributability of MAC and assign the training of
each layer ℓ’s parameters and respective auxiliary coordinates to a different machine as
shown in Figures 3.2 and 3.1, we can reduce the time to

TMAC = EMAC ·
(

max
ℓ

[NW,ℓ · tW,ℓ]+max
ℓ

[NZ,ℓ · tZ,ℓ]
)
. (3.20)

Each W-Step iteration using SGD or Adam as the optimiser consists of a forward and
backward pass to update the respective layer (Eq. 3.3). Each Z-Step also consists of
a forward and backward pass to update the coordinates (Eq. 3.9, 3.12). Note that for
the partially decoupled Z-Step, we can precompute one of the two forward passes as it
stays constant for all iterations. Hence, we can further deconstruct the time as

TMAC = EMAC ·
(

max
ℓ

[
NW,ℓ ·

tF,ℓ+ tB,ℓ
BW

]
+max

ℓ

[
NZ,ℓ ·

tF,ℓ+ tB,ℓ
BZ

])
. (3.21)
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Assuming that the layers are distributed equally, such that the forward and backward
passes take the same time for each layer on each machine: ∀ℓ,ℓ′ ∈ {0, ...,L} tF,ℓ ≈ tF,ℓ′
and tB,ℓ ≈ tB,ℓ′ , then we can further simplify the equation to

TMAC = EMAC ·
(

max
ℓ

[NW,ℓ]
tF + tB

BW · (L+1)
+max

ℓ
[NZ,ℓ]

tF + tB
BZ · (L+1)

)
= EMAC ·

(
tF + tB
L+1

)(
maxℓ[NW,ℓ]

BW
+

maxℓ[NZ,ℓ]

BZ

)
.

(3.22)

where L is the index of the last layer, and L+1 is the total number of model layers1.

In practice, because each machine is only training a single layer, BSGD ≤ BW ≤ BZ. For
a conservative estimation of TMAC, let us assume BSGD = BW = BZ. Hence, by rear-
ranging the equation and substituting NW, max ≜ maxℓ[NW,ℓ] and NZ, max ≜ maxℓ[NZ,ℓ]
for readability, we get

TMAC = EMAC ·
(

1
L+1

)(
tF + tB
BSGD

)
(NW, max +NZ, max)

= EMAC · tSGD ·
(

NW, max +NZ, max

L+1

) (3.23)

as an approximation of MAC’s distributed runtime. It is stated in terms of the number
of MAC epochs EMAC, the time for one epoch of SGD (or Adam) tSGD through the full
network and all datapoints, the total number of layers L+1 that we can split the model
into, and the maximum number of W and Z iterations NW, max, NZ, max that any machine
performs.

3.4.3 Speedup of MAC over SGD

Using Equations 3.17 and 3.23 as relative estimates for the runtimes of batched SGD
(and by extension Adam) and distributed MAC, we can approximate that MAC is
expected to be faster than SGD or Adam when

EMAC · (NW, max +NZ, max)

L+1
< ESGD (3.24)

with a speedup of

Speedup =
TSGD

TMAC

=
ESGD · tSGD

EMAC · tSGD ·
(

NW, max+NZ, max
L+1

)
=

ESGD · (L+1)
EMAC · (NW, max +NZ, max)

.

(3.25)

Thus, MAC is expected to provide a speedup over SGD proportional to
1Although this definition of L is slightly awkward here, it is chosen to ensure consistency with the

rest of the thesis, where it is more convenient.
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• the number of layers (L+1) that the model is split into, and

and inversely proportional to

• the maximum number of W and Z-Step iterations (NW, max and NZ, max) that any
machine performs, and

• the number of MAC epochs EMAC required to reach the desired loss with MAC.

It is important to note, however, that these equations make some simplifying assump-
tions, such as ignoring time spent on computations other than the forward and backward
passes or the communication costs of MAC. It is also assumed that the distribution of
layers is approximately equal across machines. Nonetheless, this can be a reasonable
way to estimate when distributed MAC may provide a speedup over synchronous SGD.

This estimation also applies to training pipelines using model parallelism for SGD, as
the runtime is expected to be proportional to the runtime of SGD on a single machine
(see Section 2.4).

3.5 Summary

In this chapter, I proposed several extensions to the Method of Auxiliary Coordinates
(MAC) to improve its computational efficiency, scalability, and applicability to modern
deep learning architectures and tasks.

I began by providing a detailed analysis of the W-Step and Z-Step update rules, high-
lighting the coupling of the auxiliary coordinates across layers in the Z-Step. To address
this issue, I introduced two techniques for decoupling the Z-Step: partial decoupling
(2-term) and full decoupling (1-term). The partially decoupled variant approximates
the coupled Z-Step by assuming independence between the auxiliary coordinates of
different layers, while the fully decoupled variant further simplifies the update equations
to reduce communication overhead. I demonstrated that one iteration of the coupled
Z-Step is equivalent to one iteration of the partially decoupled rule, and discussed the
potential drawbacks of the fully decoupled variant.

Furthermore, I extended MAC to support custom differentiable loss functions, enabling
its application to a wider range of tasks beyond image autoencoding. I also showed how
MAC can handle modern, complex network architectures by treating each layer as a
self-contained function, allowing for the incorporation of architectural features such as
skip connections and layer normalisation. Additionally, I discussed the use of dropout
regularization in MAC, suggesting its application only during the W-Step to maintain
deterministic forward passes during the Z-Step.

Finally, I introduced a set of equations to describe the theoretical speedup of distributed,
decoupled MAC compared to batched SGD or Adam. The speedup is expected to be
proportional to the number of layers the model is split into and inversely proportional
to the maximum number of W and Z-Step iterations performed by any machine as well
as the number of MAC epochs required to reach the desired loss, although the latter
should come at no surprise.
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These extensions aim to enhance the efficiency and applicability of MAC, making it a
more viable alternative to traditional training methods for modern deep learning tasks.
These extensions will be applied to MAC and experimentally evaluated in the next
chapter, providing insights into their effectiveness and potential trade-offs. It will also
provide empirical insight into some of MAC’s peculiarities.



Chapter 4

Experiments

This chapter details the experiments that were run to evaluate the decoupled Method of
Auxiliary Coordinates in various scenarios to provide insight into three fundamental
questions, enumerated by their sections:

(4.2) Whether MAC converges, as demonstrated for the given models on the given task,
and how it compares to the commonly used SGD and Adam optimisers (Kingma
& Ba, 2015; Rumelhart et al., 1986).

(4.3) How we can choose good hyperparameters for MAC and how sensitive the
training outcome is to these hyperparameters.

(4.4) How we might split up a model such that training it using MAC achieves the best
final performance.

Finally, based on the results in this chapter, I will provide an intermediate conclusion
on the practicality of MAC.

4.1 Experimental setup

Dataset Following on from last year’s MInf 1 project, my experiments are designed
around speech processing, specifically phone classification on the TIMIT (Garofolo,
John S. et al., 1993) dataset. Although the dataset is commonly regarded as a small ‘toy’
dataset with its 6300 English utterances and approximately 5 hours of speech, compared
to the up to 960 hours contained in the widely used LibriSpeech dataset (Panayotov
et al., 2015), I am using TIMIT specifically for its smaller size. Its size allows for
faster iteration over implementations, faster training, easier caching of the auxiliary
coordinates and importantly, as I will elaborate on in Section 4.3, easier hyperparameter
searches.

For the model input, the utterances’ waveforms were converted to 40-dimensional
log-mel features with a 25 ms window and 10 ms stride (see Section 2.5. The features
are normalised using the mean and variance of the full training set.

28
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Models The optimisation algorithms were used to train a 6-layer multi-layer percep-
tron (MLP; See Table 4.1) as well as a model with 4 stacked Transformer encoders and
linear layers to scale the input and output to the appropriate dimensions (Vaswani et al.,
2017; See Table 4.2).

Groupings As described in the previous chapter, the Method of Auxiliary Coordinates
works by splitting up a model into layers, where each layer is represented functionally
as fℓ( · ; θθθℓ). For simplicity, instead of splitting up the MLP and Transformer models
into six layers each, I split them into two groups consisting of one or more layers each.
The groupings are indicated in the tables by dashed lines. Grouping (1,5) has the input
layer in the first group, and all four hidden layers as well as the output layer in the
second group. Grouping (3,3) is an approximately even split in terms of parameter
counts, where Group 1 contains the input layer and two hidden layers, and Group 2
contains the other two hidden layers as well as the output layer. Grouping (5,1) has all
layers except for the output layer in the first group.

Computational resources The computational resources used for the experiments
in this chapter are on the so-called ‘MLP’ cluster kindly provided by the University
of Edinburgh School of Informatics. The compute nodes used each had an ‘NVIDIA
GeForce RTX 2080 Ti’ GPU with 11 GiB of memory. The distributed training using
MAC was executed on two compute nodes in parallel, one group per node. Because
of a significant outage of the cluster up until a little over one week before submission,
and corruption of the data stored on it, the experiments detailed in this chapter are
not as extensive as initially intended. This has in particular affected the more time-
consuming experiments on Transformers. However, the limited results should still
suffice in demonstrating the intended results and patterns.
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Table 4.1: The MLP’s architecture trained for this chapter’s experiments. The experiments
on MAC split the model into two groups. Depending on the experiment, different
groupings are chosen. Each group must have at least one layer. The points in the
network where the model is split are marked by dashed lines and are labeled by the
grouping which they represent. E.g. the first grouping (1,5) has only the one layer in the
first group and five layers in the second group.

Grouping Layer Operation Output Shape # Parameters

Input
Linear(40, 256) (batch, frames, 256) 10,496

(1,5)
ReLU (batch, frames, 256) –

Hidden
Linear(256, 256) (batch, frames, 256) 65,792
ReLU (batch, frames, 256) –

Hidden
Linear(256, 256) (batch, frames, 256) 65,792

(3,3)
ReLU (batch, frames, 256) –

Hidden
Linear(256, 256) (batch, frames, 256) 65,792
ReLU (batch, frames, 256) –

Hidden
Linear(256, 256) (batch, frames, 256) 65,792

(5,1)
ReLU (batch, frames, 256) –

Output Linear(256, 62) (batch, frames, 62) 15,934

Table 4.2: The architecture of the Transformer-based model trained for this chapter’s
experiments. The experiments on MAC split the model into two groups. Each grouping is
marked with a dashed line and labeled with the number of layers in each group. E.g. the
first grouping (1,5) has only the one layer in the first group and five layers in the second
group. Each ‘TransformerEncoder’ operation used in the hidden layers has a dimension
of 256 and 8 attention heads.

Grouping Layer Operation Output Shape # Parameters

(1,5)
Input Linear(40, 256) (batch, frames, 256) 10,496

Hidden TransformerEncoder (batch, frames, 256) 1.3M

(3,3)
Hidden TransformerEncoder (batch, frames, 256) 1.3M

Hidden TransformerEncoder (batch, frames, 256) 1.3M

(5,1)
Hidden TransformerEncoder (batch, frames, 256) 1.3M

Output Linear(256, 62) (batch, frames, 62) 15,934

4.1.1 Implementation

The implementation is done using PyTorch (Paszke et al., 2019) in two variants: a syn-
chronous implementation where first the W-Steps for each group are run in succession
and then the Z-Steps in succession, although each step’s layers or zs can be optimised
in any order or even in parallel. This simplifies certain measurements shown throughout
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the following sections. The other variant is a distributed, communication-based imple-
mentation to take advantage of the decoupled nature of MAC. Here, multiple machines
(cluster nodes) optimise each group’s W-Step in parallel, then communicate the updated
parameters to the other machines, and subsequently optimise the zs in parallel. As a
proof-of-concept, the communication is done by writing to and reading from the files,
although more sophisticated Interprocess Communication methods (or IPC) will be
significantly faster in practice.

Optimiser for W- and Z-Steps Carreira-Perpiñán and Wang’s description of MAC
(2014) uses the Gauss-Newton method (Nocedal & Wright, 2006) to optimise the groups
in the W-Step and the auxiliary coordinates in the Z-Step. However, because Gauss-
Newton is an iterative second-order optimisation algorithm which relies on computing
the Hessian as a product of the Jacobian J⊤J, the algorithm quickly becomes very
expensive and is intractable even at the small scale of my experiments. Therefore, I
adapted the algorithm to use Adam as a first-order optimisation algorithm that was
specifically developed for training model parameters and requires only the Jacobian.

Hyperparameters With the use of Adam to optimise each W-Step and Z-Step, we
also need to specify the learning rate and number of iterations for each group’s W- and
Z-Steps. To avoid further complexity, I keep the chosen learning rate and iterations
constant throughout the training run. Since each auxiliary coordinate z(i)ℓ is optimised
independently of the other coordinates, increasing the batch size of the Z-Step does
not impact the gradients that are backpropagated to the zs and we can hence set the
Z-Step batch size to the maximum that the GPU’s memory permits. As suggested by
Carreira-Perpiñán and Wang, the Lagrange multiplier µ is initialised to 1 and increased
by 10× whenever the training loss plateaus or increases.

Finally, since I am investigating the suitability of MAC as an optimiser, I will be
primarily discussing its use in minimising training loss. The generalisation of the
resulting models has been mentioned by Carreira-Perpiñán and Wang and any remaining
analysis is left for future work.

4.2 How does MAC compare to SGD and Adam?

To provide an initial demonstration of the Method of Auxiliary Coordinates’ ability as
an optimisation technique to train deep neural networks, Figure 4.1 shows the training
loss achieved by the MLP and Transformer models (Tables 4.1 and 4.2) when trained
using SGD, Adam and MAC on the TIMIT dataset. The SGD and Adam baselines were
each run for 500 epochs, where they converged. Their learning rates were determined
by a random search as shown in Appendix C. The MAC results are shown for both, the
partially decoupled (2-term) and fully decoupled (1-term) approaches. For the MLP,
the (1,5) grouping was used while the (3,3) grouping was used for the Transformer.
These groupings were chosen as they resulted in the lowest loss (see Section 4.4). The
hyperparameters for MAC were chosen based on the results in Section 4.3. Due to the
cluster outage, no hyperparameter search was run for the Transformer model, so the
hyperparameters determined for the MLP in Table 4.4 were used across both models.
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(a) 6-layer MLP (b) 4-layer Transformer

Figure 4.1: Training loss of a 6-layer MLP (a) and 4-layer Transformer model (b) over
time when trained using different optimisers. The MLP’s grouping for both MAC variants
is (1,5) and the Transformer’s grouping is (3,3). MAC’s runtime was measured only for
the computational steps and not the communication between machines. All experiments
were executed on an NVIDIA GeForce RTX 2080 Ti GPU. The batch sizes were consis-
tent across optimisers: MLP=512, Transformer=40.

MLP We can see from the training plots of the 6-layer MLP (Fig. 4.1a) that although
each MAC epoch takes significantly longer than the epochs of SGD and Adam, each
epoch also results in a significantly larger decrease in the training loss. In effect,
both, the 1-term and 2-term variants of MAC achieve a lower training loss than the
batched stochastic gradient descent baseline within the same runtime. While MAC
does not outperform Adam, the achieved loss for any runtime is comparable. Notably,
the partially decoupled variant (2-term) appears to worsen slightly around minute 9
while the fully decoupled variant continues to improve. Although this appears counter-
intuitive given the discussion about the fully decoupled variant being less stable, at the
end of Section 3.2.2, the difference is minute and could be due to randomness.

Transformer Although the MLP’s hyperparameters (Table 4.4) were used to train the
4-layer Transformer in Figure 4.1b, instead of tuning them specifically for this model,
the pattern is similar. Both variants of MAC initially outperform SGD by achieving a
lower training loss within a shorter runtime. However, after some epochs the partially
decoupled variant begins to plateau above the loss achieved by SGD, while the fully
decoupled variant continues to decrease the loss, outperforming SGD. Adam again
converges faster, although the loss appears very unstable towards the end with the spikes
being caused by exploding gradients which I am clipping. If the hyperparameters are
tuned appropriately, the loss curves of MAC might edge closer to Adam, although they
are unlikely to beat it, given the MLP’s results.

These results show that with the extensions from Chapter 3, MAC can effectively
generalise to training more modern deep learning architectures on phone classification
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tasks with a non-MSE loss. The experiments further demonstrate that by distributively
training models, we can achieve a lower training loss than SGD in less time on TIMIT.
While the models’ layers were split into only 2 groups, the theoretical analysis of MAC’s
speedup in Section 3.4.3 suggests that MAC’s performance may further improve, likely
beating Adam, if the models are divided into more groups.

(a) MLP, Adam (b) MLP, MAC 1-term (c) MLP, MAC 2-term

(d) Transformer, Adam (e) Transformer, MAC 1-term (f) Transformer, MAC 2-term

Figure 4.2: Parameter changes per epoch for each group, measured as the mean
absolute difference per epoch. The subfigures show different combinations of model
type and optimiser, where the top row is the MLP and the bottom row is the Transformer
model. The training runs are identical to those in Figure 4.1. MLP: grouping=(1,5) batch
size=512, Transformer: grouping=(1,5) batch size=40.

Parameter updates To visualise ‘how much’ each group gets trained during MAC,
I plotted the mean absolute parameter changes in Figure 4.2. The top row compares
Adam against MAC’s 1-term and 2-term variants when training the MLP. The bottom
row compares the same optimisers when training the Transformer. It is interesting to
observe that while Adam trains the model by adjusting both groups with magnitude,
MAC changes the parameters in the second group significantly more (10 to 1000×).
Nonetheless, both optimisers (especially Adam and 1-term MAC) achieve comparable
losses. This difference in magnitudes is even present in Figure 4.2e where both groups
have almost the same learning rate and number of iterations for both groups’ W-Steps.
We can further deduce from the previous plots in Figure 4.1a that for the MLP one
MAC epoch corresponds to approximately 50 epochs of Adam, which might cause us
to expect the parameter changes in MAC to be of a greater magnitude. However, this is
not the case either.
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It is also worth noting that the first MAC epoch does not change the parameters in Group
1. This is because the auxiliary coordinates are initialised by a forward pass through
the model and since the first W-Step is executed before the first Z-Step (following
Carreira-Perpiñán and Wang, 2014), the MSE loss for Group 1 is initially 0 until the
first Z-Step.

The spikes in Figure 4.2d are the same ones as seen in Figure 4.1b and are again due to
exploding gradients, which are being clipped.

4.3 Choosing hyperparameters

Besides knowing that MAC is a feasible method to distributively train deep neural
networks, its fundamental differences to stochastic gradient descent and Adam makes it
difficult to form a first intuition about how to set the hyperparameters. This section is
intended to shine a light on this issue and provide an initial guideline.

Hyperparameters For a model which is split into n groups, each MAC epoch consists
of n W-Steps and n− 1 Z-Steps (see Figures 3.1 and 3.2). Each W and Z-Step is
a separate minimisation problem that is optimised using Adam. This makes 2n− 1
hyperparameters for n groups. Besides those, we also need to set the batch size for each
W and Z-Step, the Lagrange Multiplier µ and decide on the grouping. However, for this
thesis, all batch sizes will be fixed at 512 for the MLP and 40 for the Transformer. The
Lagrange Multiplier scheduling follows Carreira-Perpiñán and Wang (2014), and the
grouping will be discussed in Section 4.4.

While the number of hyperparameters scales linearly with the number of groups, the
cost of searching the hyperparameter space scales exponentially with its size and thus
exponentially with the number of groups. Therefore, to get an idea of how to set the
hyperparameters without having to search an exponentially large space, I limit the
number of groups to two. Because of the cluster outage, I also present only the results
for the MLP, although they should sufficiently generalise as demonstrated in Section
4.2.

Search configuration Based on my experience with implementing and testing MAC,
I chose the hyperparameter ranges detailed in Table 4.3 for a random search. The
number of iterations is restricted to a grid of three values for the W-Step and four
values for the Z-Step to keep the search space sufficiently small. The search tried
1500 hyperparameter combinations where each training run lasted for 10 epochs. To
reduce the runtime, I applied pruning, although very carefully. Given two sets of
hyperparameters, where the first set only trains Group 2 to convergence, while hardly
training Group 1, while the second set trains both groups, the first set will achieve a
much lower loss in the first few epochs, but the second set will achieve a lower loss
overall. Because of this, I can’t simply prune a training run when it starts with a higher
loss than previous runs. Instead, I decided to let every run continue at least until the loss
stops decreasing and then prune if the loss at the current epoch is higher than the median
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Table 4.3: Hyperparameter ranges for the random search. The learning rates were
log-distributed such that [10−4,10] is more accurately represented as 10i where i is
uniformly distributed under [−4,1]. The table’s notation was used for simplicity. The
iterations can only take on the values in their respective sets, similar to a grid search.
The ranges were applied to training both the fully and partially decoupled MAC variants.

Step Hyperparameter Range

W-Step: Group 1
Learning Rate [10−4, 10]
Iterations {34, 67, 100}

W-Step: Group 2
Learning Rate [10−4, 10]
Iterations {1, 34, 67}

Z-Step
Learning Rate [10−5, 1]
Iterations {1, 15, 30, 45}

loss of previous runs at that epoch. While this keeps many unpromising candidates, it
importantly avoids discarding good hyperparameter candidates.

W-Step iterations Recalling the condition under which MAC provides a speedup
over SGD (Eq. 3.24), the number of W-Step and Z-Step iterations has a large impact on
the speedup. As the search has found the number of Z-Step iterations to be negligible in
comparison to the W-Step (Table 4.4), I focus on how the final loss relates to the number
of W-Step iterations within each group. Each Subfigure in 4.3 shows the minimum loss
achieved for each combination of W-Step iterations in Group 1 (W1) and Group 2 (W2)
for a different model and grouping. For instance, Figure 4.3a’s bottom left field shows
the lowest loss that the MLP was trained to during the search, given that we use fully
decoupled MAC, a (1,5) grouping, 34 iterations in Group 1’s W-Step and 67 iterations
in Group 2’s W-Step. The fields highlighted in orange show the best combination of
W-Step iterations for each MAC variant and grouping.

Looking at the shading of the heatmaps, especially in the bottom row for the 2-term
variant, we can observe that for grouping (1,5) where most layers are in Group 2,
changing Group 2’s W-Step iterations (W2) has the most impact on the loss, while for
grouping (5,1) where most layers are in the first group, changing W1 has the greatest
impact. In particular, we want the number of iterations to be high for the group with the
most layers. Oddly, in Figure 4.3e with grouping (3,3) where both groups have the same
number of layers, using the maximum number of iterations for both groups leads to the
worst performance. However interestingly, a W1-W2 combination of 67-67 or 34-67
appears to be reasonably good. The overall best combination of iterations, grouping and
decoupling variant for training a 6-layer MLP on TIMIT appears to be to use 2-term
MAC with a (1,5) grouping and W1=W2=67.

W-Step learning rates The best hyperparameters for each MAC variant and grouping
are compiled in Table 4.4. Looking at the learning rates for groups 1 and 2, we can
again see a pattern: The group with more layers tends to have a lower learning rate. If
the layers are approximately evenly split between the groups, the learning rates are also
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(a) 1-term, Grouping (1,5) (b) 1-term, Grouping (3,3) (c) 1-term, Grouping (5,1)

(d) 2-term, Grouping (1,5) (e) 2-term, Grouping (3,3) (f) 2-term, Grouping (5,1)

Figure 4.3: Training losses achieved on the MLP with the best hyperparameters given the
number of W-Step iterations for each group. The subplots show different combinations
of decoupling variant and grouping. The best W-Step iterations are highlighted in orange
within each subplot.

approximately equal.

Z-Step Looking at the same Table’s (4.4) Z-Step column, we can make out that
groupings with a larger Group 1 require a larger Z-Step by either increasing the number
of iterations as for 1-term (5,1) or increasing the learning rate as for 2-term (5,1). This
makes intuitive sense since the objective is passed down to Group 1 via the Z-Step. The
larger the Z-Step, the more of the task gets passed on to Group 1.

Table 4.4: Best Hyperparameters for each MAC variant and grouping of the MLP. The
hyperparameters were found by a random search over the ranges in Table 4.3, over
1,500 trials. Each trial trained for 10 epochs and the final training loss was recorded.

Grouping
W-Step: Group 1 W-Step: Group 2 Z-Step

Loss
Learning Rate Iterations Learning Rate Iterations Learning Rate Iterations

1-term
(1,5) 2.8×10−2 67 2.5×10−3 67 1.4×10−5 1 1.6
(3,3) 1.2×10−4 100 1.5×10−4 67 1.0×10−4 1 2.2
(5,1) 2.1×10−3 100 1.3×10−2 67 8.7×10−4 15 1.7

2-term
(1,5) 3.4×10−4 67 6.7×10−3 67 3.0×10−5 1 1.4
(3,3) 2.8×10−4 34 9.2×10−4 67 1.4×10−5 1 2.0
(5,1) 1.2×10−3 100 3.1×10−3 34 1.0×10−1 1 1.8

Summary This section explored how to set the hyperparameters when using MAC to
distributively train deep neural networks. A random search was conducted over a limited



Chapter 4. Experiments 37

hyperparameter space, focusing on a 6-layer MLP split into two groups to keep the
search tractable. The results provide initial guidelines for setting MAC hyperparameters:

• The number of W-Step iterations should be higher for the group containing more
layers. When both groups are evenly split, use roughly the same number of
iterations.

• The learning rate for the W-Step tends to be lower for the group with more layers.
When layers are approximately evenly divided, the learning rates are also roughly
equal between groups.

• Groupings with a larger first group require a larger Z-Step, either by increasing
the number of iterations or the learning rate. This makes the first group learn a
bigger part of the task.

The best overall hyperparameters found for training the 6-layer MLP on TIMIT were
to use 2-term MAC with a (1,5) layer grouping, 67 iterations for both W-Steps and
a single iteration Z-Step. While these findings provide helpful intuition, the optimal
hyperparameter settings will likely vary based on the specific model architecture, dataset,
and number of groups. Further research is needed to develop more generalisable
hyperparameter recommendations for MAC.

4.4 Grouping layers for MAC

In the previous sections, I already mentioned some differences between the groupings,
particularly in choosing hyperparameters. Figure 4.4 further visualises the varying
training patterns of the groupings for both decoupling variants and both models.

Looking only at Figure 4.4a on training the MLP, both the fully (1-term) and partially
(2-term) decoupled variants of MAC show a similar trend where the (1,5) achieves the
best results, next the (5,1) and although the even grouping starts off reasonably well,
it ends up performing the worst. The plots for the Transformer model in the bottom
Figure 4.4b show a very different pattern. Here, the (3,3) grouping does best, again
for both variants. However, with the chosen Hyperparameters, there is no clear winner
when comparing the (1,5) and (5,1) groupings. I cannot make out any pattern for which
grouping to choose for which architecture, and given a previously untested model, all
three groupings would need to be tried (or possibly even others).

Besides demonstrating MAC’s sensitivity to the grouping of layers, the fact that the (5,1)
grouping does comparatively well is also evidence that MAC not only trains the top
group (Group 2) but also effectively trains the bottom group which is further removed
from the output and thus the objective.

4.5 Conclusion on decoupled MAC

The experiments in this chapter have demonstrated that the decoupled Method of Auxil-
iary Coordinates can effectively train deep neural networks such as MLPs, Transformers
and likely others on speech tasks like phone classification on the TIMIT dataset. By
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(a) MLP (b) Transformer

Figure 4.4: Training losses for each grouping of the 6-layer MLP (a) and 4-layer Trans-
former (b) when trained with partially or fully decoupled MAC. All hyperparameters except
for the batch size were the same for both models and are found in Table 4.4. Batch sizes:
MLP=512, Transformer=40.

optimising the model in two groups, distributing the groups as visualised in Figures 3.1
and 3.2, MAC can achieve a lower training loss than SGD in less time. While MAC did
not outperform Adam in the experiments, the theoretical speedup analysis in Section
3.4.3 suggests that MAC’s performance may further improve, likely beating Adam, if
the models are divided into more than two groups.

As the theoretical analysis in Section 3.2.2 shows that 1-term MAC requires less
communication between machines, and the above results demonstrate that it consistently
outperforms the 2-term variant, fully decoupling should be recommended.

The hyperparameter search provided initial guidelines for setting the learning rates and
number of iterations for the W-Steps and Z-Steps based on the relative sizes of the layer
groups. However, the optimal hyperparameter settings will likely vary based on the
specific model architecture, dataset, and number of groups. Further research is needed
to develop more generalisable hyperparameter recommendations.

The sensitivity of MAC to how the model layers are grouped was also shown. Although
different groupings are optimal for the MLP and Transformer models, with no apparent
pattern, the best grouping (when found) performs well. Furthermore, MAC’s reasonable
performance even with a grouping of (5,1) that is heavily imbalanced towards the input
demonstrates its ability to train both the last and earlier layers of the model.

In summary, the decoupled Method of Auxiliary Coordinates is a promising optimi-
sation technique for distributively training deep neural networks. Despite requiring
more computations per layer than SGD or Adam, MAC’s parallelisation can offset the
computational overhead with as little as two groups. While MAC is unlikely to be used
by individuals or academics training small to medium-sized models, it has potential for
companies training very deep models with access to large data centres.

To fully harness MAC’s potential in these use cases, however, future work should focus
on developing principled methods for choosing hyperparameters and layer groupings.



Chapter 5

Conclusion

This thesis investigated the Method of Auxiliary Coordinates (MAC) as an alternative
optimisation framework for the distributed training of deep neural networks. Several
extensions were proposed to enable MAC’s application to modern architectures and
tasks beyond the autoencoding use case originally explored by Carreira-Perpiñán and
Wang (2014).

5.1 Contributions

The primary contributions of this thesis were:

• Decoupling the Z-Step update rules by proposing a partially decoupled and fully
decoupled MAC variant. The partially decoupled variant makes the implicit
assumption of Carreira-Perpiñán and Wang (2014) explicit, while the fully decou-
pled variant further improves upon it by reducing the amount of data that needs
to be transferred between machines after each epoch. The explicit introduction of
these variants ultimately improves the distributability and effectiveness of MAC.

• Adapting MAC to use the first-order Adam optimiser in its W and Z-Step, instead
of the significantly more expensive Gauss-Newton method used by Carreira-
Perpiñán and Wang (2014), thereby making the implementation faster.

• Adjusting MAC’s update rules to support custom differentiable loss functions and
modern architectures such as Transformers.

• A description of the theoretical speedup offered by distributed MAC over stan-
dard techniques like SGD and Adam. Specifically, this speedup was found to
be proportional to the number of groups into which the model is split for the
optimisation, and inversely proportional to the number of iterations required for
each W and Z-Step.

• Experiments on how the runtime of MAC, using the determined optimal hyperpa-
rameters and layer grouping, compares to SGD and Adam baselines.

• An evaluation of the different possible ways in which we can split the model and
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its effect on MAC’s performance. Further, analyses of how to set the hyperpa-
rameters and the W and Z-Step iterations to take the most advantage of MAC’s
distributability.

5.2 Limitations

While the proposed extensions enabled MAC to train modern architectures on speech
tasks, there were some notable limitations:

• Although the 6-layer MLP and 4-layer Transformer models and the TIMT dataset
used in my experiments were larger and more complex than those used by Carreira-
Perpiñán and Wang (2014), they were nonetheless small in comparison to more
commonly used models and benchmarks (Hsu et al., 2021; Panayotov et al.,
2015).

• While the hyperparameter selection guidelines provided in this thesis should
give the reader an initial idea of the ranges and patterns, they are limited to
models split into two groups and were only determined using the multi-layer
perceptron. However, the hyperparameters have been shown to also provide
reasonable performance when training a Transformer-based model. They may
generalise further.

• Despite fully decoupled MAC showing improved performance when compared
to both the coupled and partially decoupled variants, the number of auxiliary
coordinates introduced by MAC scale linearly with the dataset size. As all of a
layer’s coordinates need to be transferred from one machine to another after each
epoch, the communication cost rises significantly for larger datasets.

5.3 Future work

Based on the findings and limitations of this thesis, several directions for future research
can be identified:

• Develop approaches, approximations, or simplifications that reduce the number
of hyperparameters required by MAC. Following this improvement, it is useful
to develop more detailed guidelines for selecting hyperparameters and layer
groupings based on the model architecture and dataset.

• Explore alternative approaches to distributing the computations that avoid trans-
ferring all zs after each epoch and instead transfer the model’s parameters which
tend to be smaller and thus faster to send between machines.

While the current work demonstrates MAC’s potential as a distributed optimisation
method, addressing these remaining limitations would transform the Method of Auxil-
iary Coordinates into a viable technique for efficiently training large-scale deep learning
models.
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Appendix A

Schoolbook Matrix Multiplication

The schoolbook algorithm for matrix multiplication is the algorithm typically taught in
schools and is the way most people multiply matrices by hand, although it is not the
most efficient way to multiply matrices. The algorithm is as follows:

Algorithm A.1 Schoolbook Matrix Multiplication

Input: A ∈ Rm×n, B ∈ Rn×p

Output: C = AB ∈ Rm×p

Initialize C ∈ Rm×p to be the zero matrix
for i = 1 to m do

for j = 1 to p do
for k = 1 to n do

Ci j←Ci j +Aik ·Bk j
end for

end for
end for

It should be easy to see that the time complexity of this algorithm is O(mnp). For
square matrices of size n×n, the time complexity is O(n3).
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Appendix B

Partial derivatives of the coupled and
decoupled Z-Step update rules

The following are the partial derivatives for the coupled, partially decoupled and fully
decoupled Z-Step updates for a single auxiliary coordinate z(i)ℓ . For simplicity, let

zℓ ≜ z(i)ℓ and fℓ(·)≜ fℓ( · ; θθθℓ).

Coupled (Eq. 3.5):

∂EQ

∂zℓ
=

∂

∂zℓ

(
1
2
∥y− fL(zL)∥2 +

µ
2

L

∑
ℓ′=1
∥zℓ′− fℓ′−1(zℓ′−1)∥2

)

=
∂

∂zℓ

(µ
2
∥zℓ+1− fℓ(zℓ)∥2 +

µ
2
∥zℓ− fℓ−1(zℓ−1)∥2

)
=
(µ

2

)
2∥zℓ+1− fℓ(zℓ)∥2 fℓ(zℓ)− zℓ+1

∥zℓ+1− fℓ(zℓ)∥

(
∂ fℓ(zℓ)

∂zℓ

)
+
(µ

2

)
2∥zℓ− fℓ−1(zℓ−1)∥2 fℓ−1(zℓ−1)− zℓ

∥zℓ− fℓ−1(zℓ−1)∥

= µ
(
( fℓ(zℓ)− zℓ+1)

∂ fℓ(zℓ)
∂zℓ

+ zℓ− fℓ−1(zℓ−1)

)
.

(B.1)

Partially decoupled (Eq. 3.9):
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Fully decoupled (Eq. 3.12):
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As the above formulations are independent of the network architecture choice, the
partial derivative ∂ fℓ(zℓ)

∂zℓ
is to be computed accordingly.



Appendix C

Learning rate searches for SGD and
Adam

Figure C.1 shows the results of the random hyperparameter searches for the learning
rate, performed for Stochastic Gradient Descent (SGD) and Adam on a 6-layer MLP
(see Table 4.1, N = 4) and a 4-layer Transformer network (see Table 4.2, N = 6).
All four searches were done over the range [10−5,102] and for 20 epochs. Runs that
appeared not promising were discarded before completion. The best learning rates are
found in Table C.1.

Table C.1: Best learning rates according to the searches from Figure C.1.

SGD Adam

6-layer MLP 2.7×100 5.0×10−3

4-layer Tranformer 1.7×10−1 7.9×10−4
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(a) SGD for a 6-layer MLP (b) Adam for a 6-layer MLP

(c) SGD for a 4-layer Transformer (d) Adam for a 4-layer Transformer

Figure C.1: Random search of the learning rate for SGD and Adam for two architectures
used in Chapter 4. Unpromising runs were pruned before completion.
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